Cargando…

Mitochondrial Genomes of Two Asexual Trichogramma (Hymenoptera: Trichogrammatidae) Strains and Comparison with Their Sexual Relatives

SIMPLE SUMMARY: Sexual reproduction is dominant in animals, while asexual lineages are rare and evolutionarily short-lived. However, sexual reproduction has substantial costs, such as male production, inputs to courtship and mating, increased risk of predator exposure, and sexually transmitted disea...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Zhi-Chao, Qi, Guang-Yuan, Yao, Tian-Yi, Li, Yuan-Xi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9224637/
https://www.ncbi.nlm.nih.gov/pubmed/35735886
http://dx.doi.org/10.3390/insects13060549
Descripción
Sumario:SIMPLE SUMMARY: Sexual reproduction is dominant in animals, while asexual lineages are rare and evolutionarily short-lived. However, sexual reproduction has substantial costs, such as male production, inputs to courtship and mating, increased risk of predator exposure, and sexually transmitted diseases. A large body of theories has been proposed to explain the paradox of sex. One favored explanation is that asexuals are more likely to accumulate a greater number of deleterious mutations, known as Muller’s ratchet. Trichogramma is a genus of egg parasitoid wasps and is widely used as a biological control agent for agricultural and forest pests. With asexual lineages in at least 16 species, Trichogramma provides an excellent model to investigate the causes and consequences of asexual reproduction. In this study, we sequenced and assembled two asexual Trichogramma mitogenomes, representing two divergent origins of asexual reproduction. The asexual T. pretiosum is induced by the endosymbiont Wolbachia, while T. cacoeciae presumably originates from interspecific hybridization. To test Muller’s ratchet hypothesis, we compared these two asexual mitogenomes with their sexual relatives and found no association between asexual reproduction and mutation accumulation. This study provides a basis for further investigation into mitochondrial evolution and asexual reproduction in Trichogramma. ABSTRACT: Despite its substantial costs, sexual reproduction dominates in animals. One popular explanation for the paradox of sex is that asexual reproduction is more likely to accumulate deleterious mutations than sexual reproduction. To test this hypothesis, we compared the mitogenomes of two asexual wasp strains, Trichogramma cacoeciae and T. pretiosum, to their sexual relatives. These two asexual strains represent two different transition mechanisms in Trichogramma from sexual to asexual reproduction. Asexual T. pretiosum is induced by Wolbachia, while T. cacoeciae presumably originated from interspecific hybridization. We sequenced and assembled complete mitochondrial genomes of asexual T. cacoeciae and T. pretiosum. Compared to four sexual relatives, we found no evidence of higher mutation accumulation in asexual Trichogramma mitogenomes than in their sexual relatives. We also did not detect any relaxed selection in asexual Trichogramma mitogenomes. In contrast, the intensified selection was detected in Nad1 and Nad4 of the asexual T. pretiosum mitogenome, suggesting more purifying selection. In summary, no higher mitochondrial mutation accumulation was detected in these two asexual Trichogramma strains. This study provides a basis for further investigating mitochondrial evolution and asexual reproduction in Trichogramma.