Cargando…

Ectomycorrhizal Influence on the Dynamics of Sesquiterpene Release by Tricholoma vaccinum

Tricholoma vaccinum is an ectomycorrhizal basidiomycete with high host specificity. The slow-growing fungus is able to produce twenty sesquiterpenes, including α-barbatene, sativene, isocaryophyllene, α-cuprenene, β-cedrene, ß-copaene, 4-epi-α-acoradiene, and chamigrene in axenic culture. For the th...

Descripción completa

Detalles Bibliográficos
Autores principales: Ezediokpu, Marycolette Ndidi, Krause, Katrin, Kunert, Maritta, Hoffmeister, Dirk, Boland, Wilhelm, Kothe, Erika
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9224709/
https://www.ncbi.nlm.nih.gov/pubmed/35736037
http://dx.doi.org/10.3390/jof8060555
Descripción
Sumario:Tricholoma vaccinum is an ectomycorrhizal basidiomycete with high host specificity. The slow-growing fungus is able to produce twenty sesquiterpenes, including α-barbatene, sativene, isocaryophyllene, α-cuprenene, β-cedrene, ß-copaene, 4-epi-α-acoradiene, and chamigrene in axenic culture. For the three major compounds, Δ(6)-protoilludene, β-barbatene, and an unidentified oxygenated sesquiterpene (m/z 218.18), changed production during co-cultivation with the ectomycorrhizal partner tree, Picea abies, could be shown with distinct dynamics. During the mycorrhizal growth of T. vaccinum–P. abies, Δ(6)-protoilludene and the oxygenated sesquiterpene appeared at similar times, which warranted further studies of potential biosynthesis genes. In silico analyses identified a putative protoilludene synthesis gene, pie1, as being up-regulated in the mycorrhizal stage, in addition to the previously identified, co-regulated geosmin synthase, ges1. We therefore hypothesize that the sesquiterpene synthase pie1 has an important role during mycorrhization, through Δ(6)-protoilludene and/or its accompanied oxygenated sesquiterpene production.