Cargando…
Graphical Image Region Extraction with K-Means Clustering and Watershed
With a wide range of applications, image segmentation is a complex and difficult preprocessing step that plays an important role in automatic visual systems, which accuracy impacts, not only on segmentation results, but directly affects the effectiveness of the follow-up tasks. Despite the many adva...
Autores principales: | Jardim, Sandra, António, João, Mora, Carlos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9224791/ https://www.ncbi.nlm.nih.gov/pubmed/35735962 http://dx.doi.org/10.3390/jimaging8060163 |
Ejemplares similares
-
A Novel Trademark Image Retrieval System Based on Multi-Feature Extraction and Deep Networks
por: Jardim, Sandra, et al.
Publicado: (2022) -
Segmentation of White Blood Cells From Microscopic Images Using a Novel Combination of K-Means Clustering and Modified Watershed Algorithm
por: Ghane, Narjes, et al.
Publicado: (2017) -
Segmentation of White Blood Cells through Nucleus Mark Watershed Operations and Mean Shift Clustering
por: Liu, Zhi, et al.
Publicado: (2015) -
Nucleus and cytoplasm segmentation in microscopic images using K-means clustering and region growing
por: Sarrafzadeh, Omid, et al.
Publicado: (2015) -
Developments in Image Processing Using Deep Learning and Reinforcement Learning
por: Valente, Jorge, et al.
Publicado: (2023)