Cargando…

DNA Hypermethylation and a Specific Methylation Spectrum on the X Chromosome in Turner Syndrome as Determined by Nanopore Sequencing

The molecular genetic mechanism of Turner syndrome (TS) still leaves much to be discovered. Methods: TS (45X0) patients and age-matched controls (46XX and 46XY) were selected. The nanopore sequencing combined with trio-whole exome sequencing (trio-WES) were used for the first time to investigate TS....

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Xin, Zhang, Beibei, Fan, Lijun, Chen, Jiajia, Su, Chang, Cao, Bingyan, Wei, Liya, Qin, Miao, Gong, Chunxiu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9225209/
https://www.ncbi.nlm.nih.gov/pubmed/35743657
http://dx.doi.org/10.3390/jpm12060872
Descripción
Sumario:The molecular genetic mechanism of Turner syndrome (TS) still leaves much to be discovered. Methods: TS (45X0) patients and age-matched controls (46XX and 46XY) were selected. The nanopore sequencing combined with trio-whole exome sequencing (trio-WES) were used for the first time to investigate TS. Results: Thirteen TS (45X0) patients and eight controls were enrolled. Trio-WES analysis did not find any pathogenetic or likely pathogenic variants except X chromosome (chrX) deletion. The average methylation levels and patterns of chrX in 45X0 and 46XY were similar, and significantly higher than in 46XX (p = 2.22 × 10(−16)). Both hyper-methylation and hypo-methylation were detected in the CpG island (CGI), CGI_shore, promoter, genebody, and PAR1-region, while in the transposon element inactivation regions of the chrX and hypermethylation were predominant. A total of 125 differentially methylated genes were identified in 45X0 compared to 46XX, including 8 and 117 hypermethylated and hypomethylated genes, respectively, with the enrichment terms of mitophagy, regulation of DNA-binding transcription factor activity, etc. Conclusions: The results suggest that the methylation profile in patients with TS might be determined by the number of X chromosomes; the patterns of methylation in TS were precisely associated with the maintenance of genomic stability and improvement of gene expression. Differentially methylated genes/pathways might reveal the potential epigenetic modulation and lead to better understanding of TS.