Cargando…
Deep Learning Analysis of Polish Electronic Health Records for Diagnosis Prediction in Patients with Cardiovascular Diseases
Electronic health records naturally contain most of the medical information in the form of doctor’s notes as unstructured or semi-structured texts. Current deep learning text analysis approaches allow researchers to reveal the inner semantics of text information and even identify hidden consequences...
Autores principales: | Anetta, Kristof, Horak, Ales, Wojakowski, Wojciech, Wita, Krystian, Jadczyk, Tomasz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9225281/ https://www.ncbi.nlm.nih.gov/pubmed/35743653 http://dx.doi.org/10.3390/jpm12060869 |
Ejemplares similares
-
Clinical Evidence behind Stereotactic Radiotherapy for the Treatment of Ventricular Tachycardia (STAR)—A Comprehensive Review
por: Miszczyk, Marcin, et al.
Publicado: (2021) -
Radiosurgery in Treatment of Ventricular Tachycardia – Initial Experience Within the Polish SMART-VT Trial
por: Kurzelowski, Radosław, et al.
Publicado: (2022) -
Time-related factors predicting a positive response to cardiac resynchronisation therapy in patients with heart failure
por: Wilczek, Jacek, et al.
Publicado: (2023) -
Readiness for Voice Technology in Patients With Cardiovascular Diseases: Cross-Sectional Study
por: Kowalska, Małgorzata, et al.
Publicado: (2020) -
Nanotechnology and stem cells in vascular biology
por: Jadczyk, Tomasz, et al.
Publicado: (2019)