Cargando…
Deep Learning Network for Speckle De-Noising in Severe Conditions
Digital holography is well adapted to measure any modifications related to any objects. The method refers to digital holographic interferometry where the phase change between two states of the object is of interest. However, the phase images are corrupted by the speckle decorrelation noise. In this...
Autores principales: | Tahon, Marie, Montrésor, Silvio, Picart, Pascal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9225311/ https://www.ncbi.nlm.nih.gov/pubmed/35735964 http://dx.doi.org/10.3390/jimaging8060165 |
Ejemplares similares
-
Strategies for reducing speckle noise in digital holography
por: Bianco, Vittorio, et al.
Publicado: (2018) -
Fast Speckle Noise Suppression Algorithm in Breast Ultrasound Image Using Three-Dimensional Deep Learning
por: Li, Xiaofeng, et al.
Publicado: (2022) -
Lock-in vibration retrieval based on high-speed full-field coherent imaging
por: Meteyer, Erwan, et al.
Publicado: (2021) -
Speckle Noise Removal Model Based on Diffusion Equation and Convolutional Neural Network
por: Nao, Siwei, et al.
Publicado: (2022) -
Anisotropic Diffusion Based Multiplicative Speckle Noise Removal
por: Gao, Mei, et al.
Publicado: (2019)