Cargando…
Agrobacterium tumefaciens-Mediated Transformation of Candida glabrata
The use of broad-spectrum antimycotic therapy, immunosuppressive therapy, and indwelling medical devices has contributed to the increased frequency of mucosal and systemic infections caused by Candida glabrata. A major concern for C. glabrata and other Candida spp. infections is the increase in drug...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9225417/ https://www.ncbi.nlm.nih.gov/pubmed/35736079 http://dx.doi.org/10.3390/jof8060596 |
Sumario: | The use of broad-spectrum antimycotic therapy, immunosuppressive therapy, and indwelling medical devices has contributed to the increased frequency of mucosal and systemic infections caused by Candida glabrata. A major concern for C. glabrata and other Candida spp. infections is the increase in drug resistance. To address these issues, additional molecular tools for the study of C. glabrata are needed. In this investigation, we developed an Agrobacterium tumefaciens transformation system for C. glabrata. A number of parameters were investigated to determine their effect on transformation frequency, and then an optimized protocol was developed. The optimal conditions for the transformation of C. glabrata were found to be an infection incubation temperature of 26 °C, 0.2 mM acetosyringone in both induction media and co-culture media, 0.7% agar concentration, and a multiplicity of infection of 50:1 A. tumefaciens to C. glabrata. Importantly, the frequency of multiple integrations was low (5%), demonstrating that A. tumefaciens generally integrates at single sites in C. glabrata, which is consistent with other fungal A. tumefaciens transformation systems. The development of this system in C. glabrata adds another tool for the molecular manipulation of this increasingly important fungal pathogen. |
---|