Cargando…
Identifying COVID-19 Severity-Related SARS-CoV-2 Mutation Using a Machine Learning Method
SARS-CoV-2 shows great evolutionary capacity through a high frequency of genomic variation during transmission. Evolved SARS-CoV-2 often demonstrates resistance to previous vaccines and can cause poor clinical status in patients. Mutations in the SARS-CoV-2 genome involve mutations in structural and...
Autores principales: | Huang, Feiming, Chen, Lei, Guo, Wei, Zhou, Xianchao, Feng, Kaiyan, Huang, Tao, Cai, Yudong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9225528/ https://www.ncbi.nlm.nih.gov/pubmed/35743837 http://dx.doi.org/10.3390/life12060806 |
Ejemplares similares
-
Identification of Phase-Separation-Protein-Related Function Based on Gene Ontology by Using Machine Learning Methods
por: Ma, Qinglan, et al.
Publicado: (2023) -
Identifying MicroRNA Markers That Predict COVID-19 Severity Using Machine Learning Methods
por: Ren, Jingxin, et al.
Publicado: (2022) -
Identification of Transcriptome Biomarkers for Severe COVID-19 with Machine Learning Methods
por: Li, Xiaohong, et al.
Publicado: (2022) -
Predicting Heart Cell Types by Using Transcriptome Profiles and a Machine Learning Method
por: Ding, Shijian, et al.
Publicado: (2022) -
Identification of methylation signatures and rules for predicting the severity of SARS-CoV-2 infection with machine learning methods
por: Liu, Zhiyang, et al.
Publicado: (2022)