Cargando…
Spintronic reservoir computing without driving current or magnetic field
Recent studies have shown that nonlinear magnetization dynamics excited in nanostructured ferromagnets are applicable to brain-inspired computing such as physical reservoir computing. The previous works have utilized the magnetization dynamics driven by electric current and/or magnetic field. This w...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9226059/ https://www.ncbi.nlm.nih.gov/pubmed/35739232 http://dx.doi.org/10.1038/s41598-022-14738-1 |
Sumario: | Recent studies have shown that nonlinear magnetization dynamics excited in nanostructured ferromagnets are applicable to brain-inspired computing such as physical reservoir computing. The previous works have utilized the magnetization dynamics driven by electric current and/or magnetic field. This work proposes a method to apply the magnetization dynamics driven by voltage control of magnetic anisotropy to physical reservoir computing, which will be preferable from the viewpoint of low-power consumption. The computational capabilities of benchmark tasks in single MTJ are evaluated by numerical simulation of the magnetization dynamics and found to be comparable to those of echo-state networks with more than 10 nodes. |
---|