Cargando…

Bridging scales between solid mechanics and surface chemistry

A continuum mechanics framework is used herein to model the strains induced in a micromechanical structure by surface phenomena such as adsorption. The resulting picture significantly differs from those of a liquid under surface tension. Considering a solid isotropic elastic material, it is shown th...

Descripción completa

Detalles Bibliográficos
Autor principal: Amiot, Fabien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9226078/
https://www.ncbi.nlm.nih.gov/pubmed/35739296
http://dx.doi.org/10.1038/s41598-022-14709-6
Descripción
Sumario:A continuum mechanics framework is used herein to model the strains induced in a micromechanical structure by surface phenomena such as adsorption. The resulting picture significantly differs from those of a liquid under surface tension. Considering a solid isotropic elastic material, it is shown that a sphere undergoes a non uniform deformation under surface adsorption. The direction of the surface’s displacement is additionally shown to depend on both the material and the sphere’s radius. It is also shown that modeling surface effects with an elastic membrane surrounding a Cauchy elastic material, the elastic energy is usually misestimated. The reported results also reveal that the overall response of a mechanical structure to surface adsorption strongly depends, at a given scaling, of the higher-grade elastic behavior of the material.