Cargando…
The relativistic Euler equations with a physical vacuum boundary: Hadamard local well-posedness, rough solutions, and continuation criterion
In this paper we provide a complete local well-posedness theory for the free boundary relativistic Euler equations with a physical vacuum boundary on a Minkowski background. Specifically, we establish the following results: (i) local well-posedness in the Hadamard sense, i.e., local existence, uniqu...
Autores principales: | Disconzi, Marcelo M., Ifrim, Mihaela, Tataru, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9226119/ https://www.ncbi.nlm.nih.gov/pubmed/35761996 http://dx.doi.org/10.1007/s00205-022-01783-3 |
Ejemplares similares
-
Well-posedness for a stochastic 2D Euler equation with transport noise
por: Lang, Oana, et al.
Publicado: (2022) -
Well-posedness of parabolic difference equations
por: Ashyralyev, A, et al.
Publicado: (1994) -
Existence and Hadamard well-posedness of a system of simultaneous generalized vector quasi-equilibrium problems
por: Zhang, Wenyan, et al.
Publicado: (2017) -
The Microscopic Derivation and Well-Posedness of the Stochastic Keller–Segel Equation
por: Huang, Hui, et al.
Publicado: (2020) -
Local Well-Posedness to the Cauchy Problem for an Equation of the Nagumo Type
por: Lizarazo, Vladimir, et al.
Publicado: (2022)