Cargando…
Transfer learning in a deep convolutional neural network for implant fixture classification: A pilot study
PURPOSE: This study aimed to evaluate the performance of transfer learning in a deep convolutional neural network for classifying implant fixtures. MATERIALS AND METHODS: Periapical radiographs of implant fixtures obtained using the Superline (Dentium Co. Ltd., Seoul, Korea), TS III (Osstem Implant...
Autores principales: | Kim, Hak-Sun, Ha, Eun-Gyu, Kim, Young Hyun, Jeon, Kug Jin, Lee, Chena, Han, Sang-Sun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Academy of Oral and Maxillofacial Radiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9226228/ https://www.ncbi.nlm.nih.gov/pubmed/35799970 http://dx.doi.org/10.5624/isd.20210287 |
Ejemplares similares
-
Transfer Learning via Deep Neural Networks for Implant Fixture System Classification Using Periapical Radiographs
por: Kim, Jong-Eun, et al.
Publicado: (2020) -
Automatic diagnosis of retention pseudocyst in the maxillary sinus on panoramic radiographs using a convolutional neural network algorithm
por: Ha, Eun-Gyu, et al.
Publicado: (2023) -
Classification and Properties of Dental Zirconia as Implant Fixtures and Superstructures
por: Ban, Seiji
Publicado: (2021) -
Performance comparison of three deep learning models for impacted mesiodens detection on periapical radiographs
por: Jeon, Kug Jin, et al.
Publicado: (2022) -
Deep learning-based fully automatic segmentation of the maxillary sinus on cone-beam computed tomographic images
por: Choi, Hanseung, et al.
Publicado: (2022)