Cargando…
Evaluation of maxillary sinusitis from panoramic radiographs and cone-beam computed tomographic images using a convolutional neural network
PURPOSE: This study developed a convolutional neural network (CNN) model to diagnose maxillary sinusitis on panoramic radiographs (PRs) and cone-beam computed tomographic (CBCT) images and evaluated its performance. MATERIALS AND METHODS: A CNN model, which is an artificial intelligence method, was...
Autores principales: | Serindere, Gozde, Bilgili, Ersen, Yesil, Cagri, Ozveren, Neslihan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Academy of Oral and Maxillofacial Radiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9226235/ https://www.ncbi.nlm.nih.gov/pubmed/35799961 http://dx.doi.org/10.5624/isd.20210263 |
Ejemplares similares
-
Cone beam computed tomographic evaluation of infraorbital canal protrusion into the maxillary sinus and its importance for endoscopic surgery
por: Serindere, Gozde, et al.
Publicado: (2022) -
Comparison of cone-beam computed tomography and panoramic radiographs in detecting maxillary sinus septa
por: Toraman Alkurt, Meryem, et al.
Publicado: (2016) -
Convolutional neural network for automatic maxillary sinus segmentation on cone-beam computed tomographic images
por: Morgan, Nermin, et al.
Publicado: (2022) -
Comparison of panoramic radiography and cone-beam computed tomography for assessing radiographic signs indicating root protrusion into the maxillary sinus
por: Jung, Yun-Hoa, et al.
Publicado: (2020) -
Automatic diagnosis of retention pseudocyst in the maxillary sinus on panoramic radiographs using a convolutional neural network algorithm
por: Ha, Eun-Gyu, et al.
Publicado: (2023)