Cargando…
Comprehensive Analysis and Reinforcement Learning of Hypoxic Genes Based on Four Machine Learning Algorithms for Estimating the Immune Landscape, Clinical Outcomes, and Therapeutic Implications in Patients With Lung Adenocarcinoma
BACKGROUND: Patients with lung adenocarcinoma (LUAD) exhibit significant heterogeneity in therapeutic responses and overall survival (OS). In recent years, accumulating research has uncovered the critical roles of hypoxia in a variety of solid tumors, but its role in LUAD is not currently fully eluc...
Autores principales: | Sun, Zhaoyang, Zeng, Yu, Yuan, Ting, Chen, Xiaoying, Wang, Hua, Ma, Xiaowei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9226377/ https://www.ncbi.nlm.nih.gov/pubmed/35757722 http://dx.doi.org/10.3389/fimmu.2022.906889 |
Ejemplares similares
-
Using Machine Learning Algorithms to Estimate the Compressive Property of High Strength Fiber Reinforced Concrete
por: Dai, Li, et al.
Publicado: (2022) -
Algorithmic fairness and bias mitigation for clinical machine learning with deep reinforcement learning
por: Yang, Jenny, et al.
Publicado: (2023) -
Algorithms for Reinforcement Learning
por: Szepesvari, Csaba
Publicado: (2010) -
Deep Reinforcement Learning and the Type IIA Landscape
por: Nelson, Brent
Publicado: (2019) -
The gradient of the reinforcement landscape influences sensorimotor learning
por: Cashaback, Joshua G. A., et al.
Publicado: (2019)