Cargando…
Machine Learning-Based Model for Prediction of Hemorrhage Transformation in Acute Ischemic Stroke After Alteplase
Hemorrhage transformation (HT) is the most dreaded complication of intravenous thrombolysis (IVT) in acute ischemic stroke (AIS). The prediction of HT after IVT is important in the treatment decision-making for AIS. We designed and compared different machine learning methods, capable of predicting H...
Autores principales: | Xu, Yanan, Li, Xiaoli, Wu, Di, Zhang, Zhengsheng, Jiang, Aizhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9226411/ https://www.ncbi.nlm.nih.gov/pubmed/35756919 http://dx.doi.org/10.3389/fneur.2022.897903 |
Ejemplares similares
-
The budget impact of alteplase in the treatment of acute ischemic stroke in Egypt
por: Aref, Hany, et al.
Publicado: (2023) -
Probing the Effective Treatment Thresholds for Alteplase in Acute Ischemic Stroke With Regression Discontinuity Designs
por: Naidech, Andrew M., et al.
Publicado: (2020) -
Low-dose vs. standard-dose alteplase for Chinese patients with acute ischemic stroke: A propensity score analysis
por: Xu, Jiawen, et al.
Publicado: (2023) -
Development and Validation of a Predictive Model for Spontaneous Hemorrhagic Transformation After Ischemic Stroke
por: Wei, Chenchen, et al.
Publicado: (2021) -
Impact of Intravenous Alteplase Door-to-Needle Times on 2-Year Mortality in Patients With Acute Ischemic Stroke
por: Bhatt, Nirav R., et al.
Publicado: (2021)