Cargando…

Noncanonical NF-κB factor p100/p52 regulates homologous recombination and modulates sensitivity to DNA-damaging therapy

Homologous recombination (HR) serves multiple roles in DNA repair that are essential for maintaining genomic stability, including double-strand DNA break (DSB) repair. The central HR protein, RAD51, is frequently overexpressed in human malignancies, thereby elevating HR proficiency and promoting res...

Descripción completa

Detalles Bibliográficos
Autores principales: Budke, Brian, Zhong, Alison, Sullivan, Katherine, Park, Chanyoung, Gittin, David I, Kountz, Timothy S, Connell, Philip P
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9226503/
https://www.ncbi.nlm.nih.gov/pubmed/35689636
http://dx.doi.org/10.1093/nar/gkac491
Descripción
Sumario:Homologous recombination (HR) serves multiple roles in DNA repair that are essential for maintaining genomic stability, including double-strand DNA break (DSB) repair. The central HR protein, RAD51, is frequently overexpressed in human malignancies, thereby elevating HR proficiency and promoting resistance to DNA-damaging therapies. Here, we find that the non-canonical NF-κB factors p100/52, but not RelB, control the expression of RAD51 in various human cancer subtypes. While p100/p52 depletion inhibits HR function in human tumor cells, it does not significantly influence the proficiency of non-homologous end joining, the other key mechanism of DSB repair. Clonogenic survival assays were performed using a pair DLD-1 cell lines that differ only in their expression of the key HR protein BRCA2. Targeted silencing of p100/p52 sensitizes the HR-competent cells to camptothecin, while sensitization is absent in HR-deficient control cells. These results suggest that p100/p52-dependent signaling specifically controls HR activity in cancer cells. Since non-canonical NF-κB signaling is known to be activated after various forms of genomic crisis, compensatory HR upregulation may represent a natural consequence of DNA damage. We propose that p100/p52-dependent signaling represents a promising oncologic target in combination with DNA-damaging treatments.