Cargando…
Probing small ribosomal subunit RNA helix 45 acetylation across eukaryotic evolution
NAT10 is an essential enzyme that catalyzes N(4)-acetylcytidine (ac(4)C) in eukaryotic transfer RNA and 18S ribosomal RNA. Recent studies suggested that rRNA acetylation is dependent on SNORD13, a box C/D small nucleolar RNA predicted to base-pair with 18S rRNA via two antisense elements. However, t...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9226516/ https://www.ncbi.nlm.nih.gov/pubmed/35648437 http://dx.doi.org/10.1093/nar/gkac404 |
_version_ | 1784733917645897728 |
---|---|
author | Bortolin-Cavaillé, Marie-Line Quillien, Aurélie Thalalla Gamage, Supuni Thomas, Justin M Sas-Chen, Aldema Sharma, Sunny Plisson-Chastang, Célia Vandel, Laurence Blader, Patrick Lafontaine, Denis L J Schwartz, Schraga Meier, Jordan L Cavaillé, Jérôme |
author_facet | Bortolin-Cavaillé, Marie-Line Quillien, Aurélie Thalalla Gamage, Supuni Thomas, Justin M Sas-Chen, Aldema Sharma, Sunny Plisson-Chastang, Célia Vandel, Laurence Blader, Patrick Lafontaine, Denis L J Schwartz, Schraga Meier, Jordan L Cavaillé, Jérôme |
author_sort | Bortolin-Cavaillé, Marie-Line |
collection | PubMed |
description | NAT10 is an essential enzyme that catalyzes N(4)-acetylcytidine (ac(4)C) in eukaryotic transfer RNA and 18S ribosomal RNA. Recent studies suggested that rRNA acetylation is dependent on SNORD13, a box C/D small nucleolar RNA predicted to base-pair with 18S rRNA via two antisense elements. However, the selectivity of SNORD13-dependent cytidine acetylation and its relationship to NAT10’s essential function remain to be defined. Here, we demonstrate that SNORD13 is required for acetylation of a single cytidine of human and zebrafish 18S rRNA. In-depth characterization revealed that SNORD13-dependent ac(4)C is dispensable for human cell growth, ribosome biogenesis, translation and development. This loss of function analysis inspired a cross-evolutionary survey of the eukaryotic rRNA acetylation ‘machinery’ that led to the characterization of many novel metazoan SNORD13 genes. This includes an atypical SNORD13-like RNA in Drosophila melanogaster which guides ac(4)C to 18S rRNA helix 45 despite lacking one of the two rRNA antisense elements. Finally, we discover that Caenorhabditis elegans 18S rRNA is not acetylated despite the presence of an essential NAT10 homolog. Our findings shed light on the molecular mechanisms underlying SNORD13-mediated rRNA acetylation across eukaryotic evolution and raise new questions regarding the biological and evolutionary relevance of this highly conserved rRNA modification. |
format | Online Article Text |
id | pubmed-9226516 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-92265162022-06-28 Probing small ribosomal subunit RNA helix 45 acetylation across eukaryotic evolution Bortolin-Cavaillé, Marie-Line Quillien, Aurélie Thalalla Gamage, Supuni Thomas, Justin M Sas-Chen, Aldema Sharma, Sunny Plisson-Chastang, Célia Vandel, Laurence Blader, Patrick Lafontaine, Denis L J Schwartz, Schraga Meier, Jordan L Cavaillé, Jérôme Nucleic Acids Res Molecular Biology NAT10 is an essential enzyme that catalyzes N(4)-acetylcytidine (ac(4)C) in eukaryotic transfer RNA and 18S ribosomal RNA. Recent studies suggested that rRNA acetylation is dependent on SNORD13, a box C/D small nucleolar RNA predicted to base-pair with 18S rRNA via two antisense elements. However, the selectivity of SNORD13-dependent cytidine acetylation and its relationship to NAT10’s essential function remain to be defined. Here, we demonstrate that SNORD13 is required for acetylation of a single cytidine of human and zebrafish 18S rRNA. In-depth characterization revealed that SNORD13-dependent ac(4)C is dispensable for human cell growth, ribosome biogenesis, translation and development. This loss of function analysis inspired a cross-evolutionary survey of the eukaryotic rRNA acetylation ‘machinery’ that led to the characterization of many novel metazoan SNORD13 genes. This includes an atypical SNORD13-like RNA in Drosophila melanogaster which guides ac(4)C to 18S rRNA helix 45 despite lacking one of the two rRNA antisense elements. Finally, we discover that Caenorhabditis elegans 18S rRNA is not acetylated despite the presence of an essential NAT10 homolog. Our findings shed light on the molecular mechanisms underlying SNORD13-mediated rRNA acetylation across eukaryotic evolution and raise new questions regarding the biological and evolutionary relevance of this highly conserved rRNA modification. Oxford University Press 2022-06-01 /pmc/articles/PMC9226516/ /pubmed/35648437 http://dx.doi.org/10.1093/nar/gkac404 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Molecular Biology Bortolin-Cavaillé, Marie-Line Quillien, Aurélie Thalalla Gamage, Supuni Thomas, Justin M Sas-Chen, Aldema Sharma, Sunny Plisson-Chastang, Célia Vandel, Laurence Blader, Patrick Lafontaine, Denis L J Schwartz, Schraga Meier, Jordan L Cavaillé, Jérôme Probing small ribosomal subunit RNA helix 45 acetylation across eukaryotic evolution |
title | Probing small ribosomal subunit RNA helix 45 acetylation across eukaryotic evolution |
title_full | Probing small ribosomal subunit RNA helix 45 acetylation across eukaryotic evolution |
title_fullStr | Probing small ribosomal subunit RNA helix 45 acetylation across eukaryotic evolution |
title_full_unstemmed | Probing small ribosomal subunit RNA helix 45 acetylation across eukaryotic evolution |
title_short | Probing small ribosomal subunit RNA helix 45 acetylation across eukaryotic evolution |
title_sort | probing small ribosomal subunit rna helix 45 acetylation across eukaryotic evolution |
topic | Molecular Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9226516/ https://www.ncbi.nlm.nih.gov/pubmed/35648437 http://dx.doi.org/10.1093/nar/gkac404 |
work_keys_str_mv | AT bortolincavaillemarieline probingsmallribosomalsubunitrnahelix45acetylationacrosseukaryoticevolution AT quillienaurelie probingsmallribosomalsubunitrnahelix45acetylationacrosseukaryoticevolution AT thalallagamagesupuni probingsmallribosomalsubunitrnahelix45acetylationacrosseukaryoticevolution AT thomasjustinm probingsmallribosomalsubunitrnahelix45acetylationacrosseukaryoticevolution AT saschenaldema probingsmallribosomalsubunitrnahelix45acetylationacrosseukaryoticevolution AT sharmasunny probingsmallribosomalsubunitrnahelix45acetylationacrosseukaryoticevolution AT plissonchastangcelia probingsmallribosomalsubunitrnahelix45acetylationacrosseukaryoticevolution AT vandellaurence probingsmallribosomalsubunitrnahelix45acetylationacrosseukaryoticevolution AT bladerpatrick probingsmallribosomalsubunitrnahelix45acetylationacrosseukaryoticevolution AT lafontainedenislj probingsmallribosomalsubunitrnahelix45acetylationacrosseukaryoticevolution AT schwartzschraga probingsmallribosomalsubunitrnahelix45acetylationacrosseukaryoticevolution AT meierjordanl probingsmallribosomalsubunitrnahelix45acetylationacrosseukaryoticevolution AT cavaillejerome probingsmallribosomalsubunitrnahelix45acetylationacrosseukaryoticevolution |