Cargando…

Probing small ribosomal subunit RNA helix 45 acetylation across eukaryotic evolution

NAT10 is an essential enzyme that catalyzes N(4)-acetylcytidine (ac(4)C) in eukaryotic transfer RNA and 18S ribosomal RNA. Recent studies suggested that rRNA acetylation is dependent on SNORD13, a box C/D small nucleolar RNA predicted to base-pair with 18S rRNA via two antisense elements. However, t...

Descripción completa

Detalles Bibliográficos
Autores principales: Bortolin-Cavaillé, Marie-Line, Quillien, Aurélie, Thalalla Gamage, Supuni, Thomas, Justin M, Sas-Chen, Aldema, Sharma, Sunny, Plisson-Chastang, Célia, Vandel, Laurence, Blader, Patrick, Lafontaine, Denis L J, Schwartz, Schraga, Meier, Jordan L, Cavaillé, Jérôme
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9226516/
https://www.ncbi.nlm.nih.gov/pubmed/35648437
http://dx.doi.org/10.1093/nar/gkac404
_version_ 1784733917645897728
author Bortolin-Cavaillé, Marie-Line
Quillien, Aurélie
Thalalla Gamage, Supuni
Thomas, Justin M
Sas-Chen, Aldema
Sharma, Sunny
Plisson-Chastang, Célia
Vandel, Laurence
Blader, Patrick
Lafontaine, Denis L J
Schwartz, Schraga
Meier, Jordan L
Cavaillé, Jérôme
author_facet Bortolin-Cavaillé, Marie-Line
Quillien, Aurélie
Thalalla Gamage, Supuni
Thomas, Justin M
Sas-Chen, Aldema
Sharma, Sunny
Plisson-Chastang, Célia
Vandel, Laurence
Blader, Patrick
Lafontaine, Denis L J
Schwartz, Schraga
Meier, Jordan L
Cavaillé, Jérôme
author_sort Bortolin-Cavaillé, Marie-Line
collection PubMed
description NAT10 is an essential enzyme that catalyzes N(4)-acetylcytidine (ac(4)C) in eukaryotic transfer RNA and 18S ribosomal RNA. Recent studies suggested that rRNA acetylation is dependent on SNORD13, a box C/D small nucleolar RNA predicted to base-pair with 18S rRNA via two antisense elements. However, the selectivity of SNORD13-dependent cytidine acetylation and its relationship to NAT10’s essential function remain to be defined. Here, we demonstrate that SNORD13 is required for acetylation of a single cytidine of human and zebrafish 18S rRNA. In-depth characterization revealed that SNORD13-dependent ac(4)C is dispensable for human cell growth, ribosome biogenesis, translation and development. This loss of function analysis inspired a cross-evolutionary survey of the eukaryotic rRNA acetylation ‘machinery’ that led to the characterization of many novel metazoan SNORD13 genes. This includes an atypical SNORD13-like RNA in Drosophila melanogaster which guides ac(4)C to 18S rRNA helix 45 despite lacking one of the two rRNA antisense elements. Finally, we discover that Caenorhabditis elegans 18S rRNA is not acetylated despite the presence of an essential NAT10 homolog. Our findings shed light on the molecular mechanisms underlying SNORD13-mediated rRNA acetylation across eukaryotic evolution and raise new questions regarding the biological and evolutionary relevance of this highly conserved rRNA modification.
format Online
Article
Text
id pubmed-9226516
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-92265162022-06-28 Probing small ribosomal subunit RNA helix 45 acetylation across eukaryotic evolution Bortolin-Cavaillé, Marie-Line Quillien, Aurélie Thalalla Gamage, Supuni Thomas, Justin M Sas-Chen, Aldema Sharma, Sunny Plisson-Chastang, Célia Vandel, Laurence Blader, Patrick Lafontaine, Denis L J Schwartz, Schraga Meier, Jordan L Cavaillé, Jérôme Nucleic Acids Res Molecular Biology NAT10 is an essential enzyme that catalyzes N(4)-acetylcytidine (ac(4)C) in eukaryotic transfer RNA and 18S ribosomal RNA. Recent studies suggested that rRNA acetylation is dependent on SNORD13, a box C/D small nucleolar RNA predicted to base-pair with 18S rRNA via two antisense elements. However, the selectivity of SNORD13-dependent cytidine acetylation and its relationship to NAT10’s essential function remain to be defined. Here, we demonstrate that SNORD13 is required for acetylation of a single cytidine of human and zebrafish 18S rRNA. In-depth characterization revealed that SNORD13-dependent ac(4)C is dispensable for human cell growth, ribosome biogenesis, translation and development. This loss of function analysis inspired a cross-evolutionary survey of the eukaryotic rRNA acetylation ‘machinery’ that led to the characterization of many novel metazoan SNORD13 genes. This includes an atypical SNORD13-like RNA in Drosophila melanogaster which guides ac(4)C to 18S rRNA helix 45 despite lacking one of the two rRNA antisense elements. Finally, we discover that Caenorhabditis elegans 18S rRNA is not acetylated despite the presence of an essential NAT10 homolog. Our findings shed light on the molecular mechanisms underlying SNORD13-mediated rRNA acetylation across eukaryotic evolution and raise new questions regarding the biological and evolutionary relevance of this highly conserved rRNA modification. Oxford University Press 2022-06-01 /pmc/articles/PMC9226516/ /pubmed/35648437 http://dx.doi.org/10.1093/nar/gkac404 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Molecular Biology
Bortolin-Cavaillé, Marie-Line
Quillien, Aurélie
Thalalla Gamage, Supuni
Thomas, Justin M
Sas-Chen, Aldema
Sharma, Sunny
Plisson-Chastang, Célia
Vandel, Laurence
Blader, Patrick
Lafontaine, Denis L J
Schwartz, Schraga
Meier, Jordan L
Cavaillé, Jérôme
Probing small ribosomal subunit RNA helix 45 acetylation across eukaryotic evolution
title Probing small ribosomal subunit RNA helix 45 acetylation across eukaryotic evolution
title_full Probing small ribosomal subunit RNA helix 45 acetylation across eukaryotic evolution
title_fullStr Probing small ribosomal subunit RNA helix 45 acetylation across eukaryotic evolution
title_full_unstemmed Probing small ribosomal subunit RNA helix 45 acetylation across eukaryotic evolution
title_short Probing small ribosomal subunit RNA helix 45 acetylation across eukaryotic evolution
title_sort probing small ribosomal subunit rna helix 45 acetylation across eukaryotic evolution
topic Molecular Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9226516/
https://www.ncbi.nlm.nih.gov/pubmed/35648437
http://dx.doi.org/10.1093/nar/gkac404
work_keys_str_mv AT bortolincavaillemarieline probingsmallribosomalsubunitrnahelix45acetylationacrosseukaryoticevolution
AT quillienaurelie probingsmallribosomalsubunitrnahelix45acetylationacrosseukaryoticevolution
AT thalallagamagesupuni probingsmallribosomalsubunitrnahelix45acetylationacrosseukaryoticevolution
AT thomasjustinm probingsmallribosomalsubunitrnahelix45acetylationacrosseukaryoticevolution
AT saschenaldema probingsmallribosomalsubunitrnahelix45acetylationacrosseukaryoticevolution
AT sharmasunny probingsmallribosomalsubunitrnahelix45acetylationacrosseukaryoticevolution
AT plissonchastangcelia probingsmallribosomalsubunitrnahelix45acetylationacrosseukaryoticevolution
AT vandellaurence probingsmallribosomalsubunitrnahelix45acetylationacrosseukaryoticevolution
AT bladerpatrick probingsmallribosomalsubunitrnahelix45acetylationacrosseukaryoticevolution
AT lafontainedenislj probingsmallribosomalsubunitrnahelix45acetylationacrosseukaryoticevolution
AT schwartzschraga probingsmallribosomalsubunitrnahelix45acetylationacrosseukaryoticevolution
AT meierjordanl probingsmallribosomalsubunitrnahelix45acetylationacrosseukaryoticevolution
AT cavaillejerome probingsmallribosomalsubunitrnahelix45acetylationacrosseukaryoticevolution