Cargando…
Usefulness of Random Forest Algorithm in Predicting Severe Acute Pancreatitis
BACKGROUND AND AIMS: This study aimed to develop an interpretable random forest model for predicting severe acute pancreatitis (SAP). METHODS: Clinical and laboratory data of 648 patients with acute pancreatitis were retrospectively reviewed and randomly assigned to the training set and test set in...
Autores principales: | Hong, Wandong, Lu, Yajing, Zhou, Xiaoying, Jin, Shengchun, Pan, Jingyi, Lin, Qingyi, Yang, Shaopeng, Basharat, Zarrin, Zippi, Maddalena, Goyal, Hemant |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9226542/ https://www.ncbi.nlm.nih.gov/pubmed/35755843 http://dx.doi.org/10.3389/fcimb.2022.893294 |
Ejemplares similares
-
A Comparison of XGBoost, Random Forest, and Nomograph for the Prediction of Disease Severity in Patients With COVID-19 Pneumonia: Implications of Cytokine and Immune Cell Profile
por: Hong, Wandong, et al.
Publicado: (2022) -
Damage associated molecular patterns and neutrophil extracellular traps in acute pancreatitis
por: Zhou, Xiaoying, et al.
Publicado: (2022) -
Non-linear correlation between amylase day 2 to day 1 ratio and incidence of severe acute pancreatitis
por: Hong, Wandong, et al.
Publicado: (2022) -
Editorial: Acute pancreatitis infection: Epidemiology, prevention, clinical characteristics, treatment, and prediction
por: Hong, Wandong, et al.
Publicado: (2023) -
Critically Ill vs. Non-Critically Ill Patients With COVID-19 Pneumonia: Clinical Features, Laboratory Findings, and Prediction
por: Hong, Wandong, et al.
Publicado: (2021)