Cargando…
Non-linearity of Metabolic Pathways Critically Influences the Choice of Machine Learning Model
The use of machine learning (ML) in life sciences has gained wide interest over the past years, as it speeds up the development of high performing models. Important modeling tools in biology have proven their worth for pathway design, such as mechanistic models and metabolic networks, as they allow...
Autores principales: | Lo-Thong-Viramoutou, Ophélie, Charton, Philippe, Cadet, Xavier F., Grondin-Perez, Brigitte, Saavedra, Emma, Damour, Cédric, Cadet, Frédéric |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9226554/ https://www.ncbi.nlm.nih.gov/pubmed/35757298 http://dx.doi.org/10.3389/frai.2022.744755 |
Ejemplares similares
-
Identification of flux checkpoints in a metabolic pathway through white-box, grey-box and black-box modeling approaches
por: Lo-Thong, Ophélie, et al.
Publicado: (2020) -
The Moral Choice Machine
por: Schramowski, Patrick, et al.
Publicado: (2020) -
GDP Forecasting: Machine Learning, Linear or Autoregression?
por: Maccarrone, Giovanni, et al.
Publicado: (2021) -
Flux prediction using artificial neural network (ANN) for the upper part of glycolysis
por: Ajjolli Nagaraja, Anamya, et al.
Publicado: (2019) -
“Snake flu,” “killer bug,” and “Chinese virus”: A corpus-assisted critical discourse analysis of lexical choices in early UK press coverage of the COVID-19 pandemic
por: Kania, Ursula
Publicado: (2022)