Cargando…
Machine Learning Model for Classifying the Results of Fetal Cardiotocography Conducted in High-Risk Pregnancies
PURPOSE: Fetal well-being is usually assessed via fetal heart rate (FHR) monitoring during the antepartum period. However, the interpretation of FHR is a complex and subjective process with low reliability. This study developed a machine learning model that can classify fetal cardiotocography result...
Autores principales: | Park, Tae Jun, Chang, Hye Jin, Choi, Byung Jin, Jung, Jung Ah, Kang, Seongwoo, Yoon, Seokyoung, Kim, Miran, Yoon, Dukyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Yonsei University College of Medicine
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9226828/ https://www.ncbi.nlm.nih.gov/pubmed/35748081 http://dx.doi.org/10.3349/ymj.2022.63.7.692 |
Ejemplares similares
-
Fetal cardiotocography before and after water aerobics during pregnancy
por: Silveira, Carla, et al.
Publicado: (2010) -
Is It Time to Redefine Fetal Decelerations in Cardiotocography?
por: Xodo, Serena, et al.
Publicado: (2022) -
Non-invasive Fetal Electrocardiography for Intrapartum Cardiotocography
por: Vullings, Rik, et al.
Publicado: (2020) -
The impact of maternal touch of the abdomen on cardiotocography fetal patterns
por: Rolland Souza, Alex S., et al.
Publicado: (2019) -
Classification of Cardiotocography Based on the Apriori Algorithm and Multi-Model Ensemble Classifier
por: Chen, Meng, et al.
Publicado: (2022)