Cargando…

Ovarian Tissue-Based Hormone Replacement Therapy Recovers Menopause-Related Signs in Mice

PURPOSE: In women, menopause manifests with a variety of symptoms related to sex-hormone deficiency. Supplementing steroid hormones with pharmacological drugs has been widely practiced. However, considering the possible complications associated with artificial hormone therapy, studies have been cond...

Descripción completa

Detalles Bibliográficos
Autores principales: Yoo, Dahyeon, Chung, Nanum, Yoo, Jungyoung, Song, Chae Young, Yang, Chungmo, Youm, Hye Won, Lee, Kangwon, Jun, Jin Hyun, Lee, Jaewang, Lee, Jung Ryeol
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Yonsei University College of Medicine 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9226832/
https://www.ncbi.nlm.nih.gov/pubmed/35748076
http://dx.doi.org/10.3349/ymj.2022.63.7.648
Descripción
Sumario:PURPOSE: In women, menopause manifests with a variety of symptoms related to sex-hormone deficiency. Supplementing steroid hormones with pharmacological drugs has been widely practiced. However, considering the possible complications associated with artificial hormone therapy, studies have been conducted to find an alternative to pharmacological hormone replacement therapy. Accordingly, this study aimed to evaluate the efficacy of tissue-based hormone replacement therapy (tHRT) for treating post-menopausal signs and symptoms. MATERIALS AND METHODS: CD-1 mice were ovariectomized, and the ovaries were cryopreserved. Following artificial induction of post-menopausal osteoporosis, cryopreserved ovaries were subcutaneously autografted, and indexes related to bone health were monitored for 12 weeks. Bone mineral density (BMD), bone mineral contents (BMC), total bone volume (BV), and body fat mass were measured by dual energy X-ray absorptiometry. Uterine atrophy was assessed histologically, and bone microstructures were imaged by micro-computed tomography analysis. RESULTS: Regardless of the number of grafted ovaries, the BMC, BMD, and BV values of mice that underwent ovary transplantation were better than those that did not undergo transplantation. The uteruses in these mice were thicker and heavier after auto-transplantation. Furthermore, the bone microstructure recovered after tHRT. CONCLUSION: Recovery of menopause-related bone loss and uterine atrophy was achieved through tHRT. Ovarian tissue cryopreservation and transplantation may be applicable not only in patients wanting to preserve fertility but also in sex hormone-deficient post-menopausal women.