Cargando…

Progress in Isoindolone Alkaloid Derivatives from Marine Microorganism: Pharmacology, Preparation, and Mechanism

Compound 1 (SMTP-7, also FGFC1), an isoindolone alkaloid from marine fungi Starchbotrys longispora FG216 and fungi Stachybotrys microspora IFO 30018, possessed diverse bioactivities such as thrombolysis, anti-inflammatory and anti-oxidative properties, and so on. It may be widely used for the treatm...

Descripción completa

Detalles Bibliográficos
Autores principales: Hang, Sijin, Chen, Hui, Wu, Wenhui, Wang, Shiyi, Fang, Yiwen, Sheng, Ruilong, Tu, Qidong, Guo, Ruihua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227046/
https://www.ncbi.nlm.nih.gov/pubmed/35736208
http://dx.doi.org/10.3390/md20060405
Descripción
Sumario:Compound 1 (SMTP-7, also FGFC1), an isoindolone alkaloid from marine fungi Starchbotrys longispora FG216 and fungi Stachybotrys microspora IFO 30018, possessed diverse bioactivities such as thrombolysis, anti-inflammatory and anti-oxidative properties, and so on. It may be widely used for the treatment of various diseases, including cerebral infarction, stroke, ischemia/reperfusion damage, acute kidney injury, etc. Especially in cerebral infarction, compound 1 could reduce hemorrhagic transformation along with thrombolytic therapy, as the traditional therapies are accompanied with bleeding risks. In the latest studies, compound 1 selectively inhibited the growth of NSCLC cells with EGFR mutation, thus demonstrating its excellent anti-cancer activity. Herein, we summarized pharmacological activities, preparation of staplabin congeners—especially compound 1—and the mechanism of compound 1, with potential therapeutic applications.