Cargando…

Follow-Up Assessment of Intracranial Aneurysms Treated with Endovascular Coiling: Comparison of Compressed Sensing and Parallel Imaging Time-of-Flight Magnetic Resonance Angiography

The aim of our study was to compare compressed sensing (CS) time-of-flight (TOF) magnetic resonance angiography (MRA) with parallel imaging (PI) TOF MRA in the evaluation of patients with intracranial aneurysms treated with coil embolization or stent-assisted coiling. We enrolled 22 patients who und...

Descripción completa

Detalles Bibliográficos
Autores principales: Vornetti, Gianfranco, Bartiromo, Fiorina, Toni, Francesco, Dall’Olio, Massimo, Cirillo, Mario, Speier, Peter, Princiotta, Ciro, Schmidt, Michaela, Tonon, Caterina, Zacà, Domenico, Lodi, Raffaele, Cirillo, Luigi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227072/
https://www.ncbi.nlm.nih.gov/pubmed/35736881
http://dx.doi.org/10.3390/tomography8030133
Descripción
Sumario:The aim of our study was to compare compressed sensing (CS) time-of-flight (TOF) magnetic resonance angiography (MRA) with parallel imaging (PI) TOF MRA in the evaluation of patients with intracranial aneurysms treated with coil embolization or stent-assisted coiling. We enrolled 22 patients who underwent follow-up imaging after intracranial aneurysm coil embolization. All patients underwent both PI TOF and CS TOF MRA during the same examination. Image evaluation aimed to compare the performance of CS to PI TOF MRA in determining the degree of aneurysm occlusion, as well as the depiction of parent vessel and vessels adjacent to the aneurysm dome. The reference standard for the evaluation of aneurysm occlusion was PI TOF MRA. The inter-modality agreement between CS and PI TOF MRA in the evaluation of aneurysm occlusion was almost perfect (κ  =  0.98, p  <  0.001) and the overall inter-rater agreement was substantial (κ  =  0.70, p  <  0.001). The visualization of aneurysm parent vessel in CS TOF images compared with PI TOF images was evaluated to be better in 11.4%, equal in 86.4%, and worse in 2.3%. CS TOF MRA, with almost 70% scan time reduction with respect to PI TOF MRA, yields comparable results for assessing the occlusion status of coiled intracranial aneurysms. Short scan times increase patient comfort, reduce the risk of motion artifacts, and increase patient throughput, with a resulting reduction in costs. CS TOF MRA may therefore be a potential replacement for PI TOF MRA as a first-line follow-up examination in patients with intracranial aneurysms treated with coil embolization.