Cargando…
Enhanced Silk Fibroin/Sericin Composite Film: Preparation, Mechanical Properties and Mineralization Activity
The periosteum plays an important role in bone formation and reconstruction. One of the reasons for the high failure rate of bone transplantation is the absence of the periosteum. Silk fibroin (SF) and silk sericin (SS) have excellent biocompatibility and physicochemical properties, which have amazi...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227074/ https://www.ncbi.nlm.nih.gov/pubmed/35746041 http://dx.doi.org/10.3390/polym14122466 |
Sumario: | The periosteum plays an important role in bone formation and reconstruction. One of the reasons for the high failure rate of bone transplantation is the absence of the periosteum. Silk fibroin (SF) and silk sericin (SS) have excellent biocompatibility and physicochemical properties, which have amazing application prospects in bone tissue engineering, but lacked mechanical properties. We developed a series of SF/SS composite films with improved mechanical properties using boiling water degumming, which caused little damage to SF molecular chains to retain larger molecules. The Fourier transform infrared spectroscopy and X-ray diffraction results showed that there were more β-sheets in SF/SS films than in Na(2)CO(3) degummed SF film, resulting in significantly improved breaking strength and toughness of the composite films, which were increased by approximately 1.3 and 1.7 times, respectively. The mineralization results showed that the hydroxyapatite (HAp) deposition rate on SF/SS composite films was faster than that on SF film. The SF/SS composite films effectively regulated the nucleation, growth and aggregation of HAp-like minerals, and the presence of SS accelerated the early mineralization of SF-based materials. These composite films may be promising biomaterials in the repair and regeneration of periosteum. |
---|