Cargando…

Deformation, Failure, and Acoustic Emission Characteristics under Different Lithological Confining Pressures

When a temporary support is used to control new surrounding rock in a deep mining roadway, the new surrounding rock is supported by the working resistance of the temporary support. In this study, the influence of deep well boring roadway deformation and rock failure characteristics under different s...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Shuo, Qin, Guangpeng, Cao, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227143/
https://www.ncbi.nlm.nih.gov/pubmed/35744315
http://dx.doi.org/10.3390/ma15124257
Descripción
Sumario:When a temporary support is used to control new surrounding rock in a deep mining roadway, the new surrounding rock is supported by the working resistance of the temporary support. In this study, the influence of deep well boring roadway deformation and rock failure characteristics under different surrounding pressure was investigated. In this paper, for each confining pressure, we experimentally identified the stress-strain, strength, and acoustic emission characteristics of the rocks. The results show that: the surrounding pressure has a significant effect on the damage deformation characteristics of the rock, and the change of the surrounding pressure directly affects the strength, damage form and elastic modulus of the rock; the strength limit of the rock increases with the surrounding pressure, and the damage form of the rock gradually changes to ductile damage with increase of the surrounding pressure; the elastic modulus of the rock increases non-linearly with the increase of the surrounding pressure. The acoustic emission signal of a rock can be divided into three stages: calm, sudden increase, and destruction. The acoustic emission ringing count rate increases suddenly and reaches a peak before the main fracture. Therefore, a sudden increase in the acoustic emission value can be considered a precursor to rock destruction.