Cargando…

Dietary Gamma-Aminobutyric Acid (GABA) Induces Satiation by Enhancing the Postprandial Activation of Vagal Afferent Nerves

Gamma-aminobutyric acid (GABA) is present in the mammalian brain as the main inhibitory neurotransmitter and in foods. It is widely used as a supplement that regulates brain function through stress-reducing and sleep-enhancing effects. However, its underlying mechanisms remain poorly understood, as...

Descripción completa

Detalles Bibliográficos
Autores principales: Nakamura, Utano, Nohmi, Taichi, Sagane, Riho, Hai, Jun, Ohbayashi, Kento, Miyazaki, Maiko, Yamatsu, Atsushi, Kim, Mujo, Iwasaki, Yusaku
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227210/
https://www.ncbi.nlm.nih.gov/pubmed/35745222
http://dx.doi.org/10.3390/nu14122492
Descripción
Sumario:Gamma-aminobutyric acid (GABA) is present in the mammalian brain as the main inhibitory neurotransmitter and in foods. It is widely used as a supplement that regulates brain function through stress-reducing and sleep-enhancing effects. However, its underlying mechanisms remain poorly understood, as it is reportedly unable to cross the blood–brain barrier. Here, we explored whether a single peroral administration of GABA affects feeding behavior as an evaluation of brain function and the involvement of vagal afferent nerves. Peroral GABA at 20 and 200 mg/kg immediately before refeeding suppressed short-term food intake without aversive behaviors in mice. However, GABA administration 30 min before refeeding demonstrated no effects. A rise in circulating GABA concentrations by the peroral administration of 200 mg/kg GABA was similar to that by the intraperitoneal injection of 20 mg/kg GABA, which did not alter feeding. The feeding suppression by peroral GABA was blunted by the denervation of vagal afferents. Unexpectedly, peroral GABA alone did not alter vagal afferent activities histologically. The coadministration of a liquid diet and GABA potentiated the postprandial activation of vagal afferents, thereby enhancing postprandial satiation. In conclusion, dietary GABA activates vagal afferents in collaboration with meals or meal-evoked factors and regulates brain function including feeding behavior.