Cargando…
A New Kinect V2-Based Method for Visual Recognition and Grasping of a Yarn-Bobbin-Handling Robot
This work proposes a Kinect V2-based visual method to solve the human dependence on the yarn bobbin robot in the grabbing operation. In this new method, a Kinect V2 camera is used to produce three-dimensional (3D) yarn-bobbin point cloud data for the robot in a work scenario. After removing the nois...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227217/ https://www.ncbi.nlm.nih.gov/pubmed/35744500 http://dx.doi.org/10.3390/mi13060886 |
_version_ | 1784734110993874944 |
---|---|
author | Han, Jinghai Liu, Bo Jia, Yongle Jin, Shoufeng Sulowicz, Maciej Glowacz, Adam Królczyk, Grzegorz Li, Zhixiong |
author_facet | Han, Jinghai Liu, Bo Jia, Yongle Jin, Shoufeng Sulowicz, Maciej Glowacz, Adam Królczyk, Grzegorz Li, Zhixiong |
author_sort | Han, Jinghai |
collection | PubMed |
description | This work proposes a Kinect V2-based visual method to solve the human dependence on the yarn bobbin robot in the grabbing operation. In this new method, a Kinect V2 camera is used to produce three-dimensional (3D) yarn-bobbin point cloud data for the robot in a work scenario. After removing the noise point cloud through a proper filtering process, the M-estimator sample consensus (MSAC) algorithm is employed to find the fitting plane of the 3D cloud data; then, the principal component analysis (PCA) is adopted to roughly register the template point cloud and the yarn-bobbin point cloud to define the initial position of the yarn bobbin. Lastly, the iterative closest point (ICP) algorithm is used to achieve precise registration of the 3D cloud data to determine the precise pose of the yarn bobbin. To evaluate the performance of the proposed method, an experimental platform is developed to validate the grabbing operation of the yarn bobbin robot in different scenarios. The analysis results show that the average working time of the robot system is within 10 s, and the grasping success rate is above 80%, which meets the industrial production requirements. |
format | Online Article Text |
id | pubmed-9227217 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92272172022-06-25 A New Kinect V2-Based Method for Visual Recognition and Grasping of a Yarn-Bobbin-Handling Robot Han, Jinghai Liu, Bo Jia, Yongle Jin, Shoufeng Sulowicz, Maciej Glowacz, Adam Królczyk, Grzegorz Li, Zhixiong Micromachines (Basel) Article This work proposes a Kinect V2-based visual method to solve the human dependence on the yarn bobbin robot in the grabbing operation. In this new method, a Kinect V2 camera is used to produce three-dimensional (3D) yarn-bobbin point cloud data for the robot in a work scenario. After removing the noise point cloud through a proper filtering process, the M-estimator sample consensus (MSAC) algorithm is employed to find the fitting plane of the 3D cloud data; then, the principal component analysis (PCA) is adopted to roughly register the template point cloud and the yarn-bobbin point cloud to define the initial position of the yarn bobbin. Lastly, the iterative closest point (ICP) algorithm is used to achieve precise registration of the 3D cloud data to determine the precise pose of the yarn bobbin. To evaluate the performance of the proposed method, an experimental platform is developed to validate the grabbing operation of the yarn bobbin robot in different scenarios. The analysis results show that the average working time of the robot system is within 10 s, and the grasping success rate is above 80%, which meets the industrial production requirements. MDPI 2022-05-31 /pmc/articles/PMC9227217/ /pubmed/35744500 http://dx.doi.org/10.3390/mi13060886 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Han, Jinghai Liu, Bo Jia, Yongle Jin, Shoufeng Sulowicz, Maciej Glowacz, Adam Królczyk, Grzegorz Li, Zhixiong A New Kinect V2-Based Method for Visual Recognition and Grasping of a Yarn-Bobbin-Handling Robot |
title | A New Kinect V2-Based Method for Visual Recognition and Grasping of a Yarn-Bobbin-Handling Robot |
title_full | A New Kinect V2-Based Method for Visual Recognition and Grasping of a Yarn-Bobbin-Handling Robot |
title_fullStr | A New Kinect V2-Based Method for Visual Recognition and Grasping of a Yarn-Bobbin-Handling Robot |
title_full_unstemmed | A New Kinect V2-Based Method for Visual Recognition and Grasping of a Yarn-Bobbin-Handling Robot |
title_short | A New Kinect V2-Based Method for Visual Recognition and Grasping of a Yarn-Bobbin-Handling Robot |
title_sort | new kinect v2-based method for visual recognition and grasping of a yarn-bobbin-handling robot |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227217/ https://www.ncbi.nlm.nih.gov/pubmed/35744500 http://dx.doi.org/10.3390/mi13060886 |
work_keys_str_mv | AT hanjinghai anewkinectv2basedmethodforvisualrecognitionandgraspingofayarnbobbinhandlingrobot AT liubo anewkinectv2basedmethodforvisualrecognitionandgraspingofayarnbobbinhandlingrobot AT jiayongle anewkinectv2basedmethodforvisualrecognitionandgraspingofayarnbobbinhandlingrobot AT jinshoufeng anewkinectv2basedmethodforvisualrecognitionandgraspingofayarnbobbinhandlingrobot AT sulowiczmaciej anewkinectv2basedmethodforvisualrecognitionandgraspingofayarnbobbinhandlingrobot AT glowaczadam anewkinectv2basedmethodforvisualrecognitionandgraspingofayarnbobbinhandlingrobot AT krolczykgrzegorz anewkinectv2basedmethodforvisualrecognitionandgraspingofayarnbobbinhandlingrobot AT lizhixiong anewkinectv2basedmethodforvisualrecognitionandgraspingofayarnbobbinhandlingrobot AT hanjinghai newkinectv2basedmethodforvisualrecognitionandgraspingofayarnbobbinhandlingrobot AT liubo newkinectv2basedmethodforvisualrecognitionandgraspingofayarnbobbinhandlingrobot AT jiayongle newkinectv2basedmethodforvisualrecognitionandgraspingofayarnbobbinhandlingrobot AT jinshoufeng newkinectv2basedmethodforvisualrecognitionandgraspingofayarnbobbinhandlingrobot AT sulowiczmaciej newkinectv2basedmethodforvisualrecognitionandgraspingofayarnbobbinhandlingrobot AT glowaczadam newkinectv2basedmethodforvisualrecognitionandgraspingofayarnbobbinhandlingrobot AT krolczykgrzegorz newkinectv2basedmethodforvisualrecognitionandgraspingofayarnbobbinhandlingrobot AT lizhixiong newkinectv2basedmethodforvisualrecognitionandgraspingofayarnbobbinhandlingrobot |