Cargando…

A Fully-Integrated Ambient RF Energy Harvesting System with 423-μW Output Power

This paper proposes a 2.4-GHz fully-integrated single-frequency multi-channel RF energy harvesting (RFEH) system with increased harvested power density. The RFEH can produce an output power of ~423-μW in harvesting ambient RF energy. The front-end consists of an on-chip impedance matching network wi...

Descripción completa

Detalles Bibliográficos
Autores principales: Pakkirisami Churchill, Kishore Kumar, Ramiah, Harikrishnan, Chong, Gabriel, Chen, Yong, Mak, Pui-In, Martins, Rui P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227311/
https://www.ncbi.nlm.nih.gov/pubmed/35746197
http://dx.doi.org/10.3390/s22124415
Descripción
Sumario:This paper proposes a 2.4-GHz fully-integrated single-frequency multi-channel RF energy harvesting (RFEH) system with increased harvested power density. The RFEH can produce an output power of ~423-μW in harvesting ambient RF energy. The front-end consists of an on-chip impedance matching network with a stacked rectifier concurrently matched to a 50 Ω input source. The circuit mitigates the “dead-zone” by enhancing the pumping efficiency, achieved through the increase of V(gs) drivability of the proposed internal gate boosting 6-stage low-input voltage charge pump and the 5-stage shared-auxiliary-biasing ring-voltage-controlled-oscillator (VCO) integrated to improve the start-up. The RFEH system, simulated in 180-nm complementary metal–oxide–semiconductor (CMOS), occupies an active area of 1.02 mm(2). Post-layout simulations show a peak power conversion efficiency(PCE) of 21.15%, driving a 3.3-kΩ load at an input power of 0 dBm and sensitivity of −14.1 dBm corresponding to an output voltage, V(out,RFEH) of 1.25 V.