Cargando…

Dual-Metal Zeolitic Imidazolate Framework Derived Highly Ordered Hierarchical Nanoarrays on Self-Supported Carbon Fiber for Oxygen Evolution

The construction of highly ordered hierarchical nanoarrays is crucial for obtaining effective transition metal carbon nanomaterial electrocatalysts for oxygen evolution reaction (OER) in water splitting. Herein, we adopted a Co metal zeolitic imidazolate framework (Co-ZIF) as a precursor by ion-exch...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Xi, Zhang, Wenjun, Zhang, Maliang, Ji, Yanhong, Su, Kunmei, Li, Zhenhuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227379/
https://www.ncbi.nlm.nih.gov/pubmed/35744229
http://dx.doi.org/10.3390/ma15124170
Descripción
Sumario:The construction of highly ordered hierarchical nanoarrays is crucial for obtaining effective transition metal carbon nanomaterial electrocatalysts for oxygen evolution reaction (OER) in water splitting. Herein, we adopted a Co metal zeolitic imidazolate framework (Co-ZIF) as a precursor by ion-exchange/etching reaction with Fe(NO(3))(3) to obtain hierarchical N-doped Co-Fe layered double hydroxide (CoFe-LDH) in situ generated in Co-ZIF nanoarrays based on a self-supported carbon cloth (CC) substrate noted as CoFe-LDH@Co-ZIF@CC. Benefiting from the synergistic effect of these species and their highly ordered self-supported nanoarray structure, the catalytic active sites were fully exposed and highly protected in alkaline electrolyte, which significantly promoted electron transport and improved electrochemical performance. The CoFe-LDH@Co-ZIF@CC exhibited the low overpotentials of about 225 and 319 mV at 10 and 100 mA cm(−2) with a small Tafel slope of 81.8 mV dec(−1) recorded in a 1.0 M KOH electrolyte. In addition, it also showed a long-term durability without obvious decay after 30 h. Therefore, its remarkable OER activity demonstrates this material’s promising application in the green hydrogen energy industry.