Cargando…
DOC-IDS: A Deep Learning-Based Method for Feature Extraction and Anomaly Detection in Network Traffic
With the growing diversity of cyberattacks in recent years, anomaly-based intrusion detection systems that can detect unknown attacks have attracted significant attention. Furthermore, a wide range of studies on anomaly detection using machine learning and deep learning methods have been conducted....
Autores principales: | Yoshimura, Naoto, Kuzuno, Hiroki, Shiraishi, Yoshiaki, Morii, Masakatu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227447/ https://www.ncbi.nlm.nih.gov/pubmed/35746191 http://dx.doi.org/10.3390/s22124405 |
Ejemplares similares
-
Extracting the Secrets of OpenSSL with RAMBleed
por: Tomita, Chihiro, et al.
Publicado: (2022) -
Deep Encrypted Traffic Detection: An Anomaly Detection Framework for Encryption Traffic Based on Parallel Automatic Feature Extraction
por: Long, Gang, et al.
Publicado: (2023) -
Anomaly Detection in Traffic Surveillance Videos Using Deep Learning
por: Khan, Sardar Waqar, et al.
Publicado: (2022) -
Doc
Publicado: (1894) -
Beam Doc
por: Yenphraphai, Jiraphon
Publicado: (2018)