Cargando…
Infectious Aerosol Capture Mask as Environmental Control to Reduce Spread of Respiratory Viral Particles
Negative pressure isolation of COVID-19 patients is critical to limiting the nosocomial transmission of SARS-CoV-2; however, airborne isolation rooms are limited. Alternatives to traditional isolation procedures are needed. The evaluation of an Infectious Aerosol Capture Mask (IACM) that is designed...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227466/ https://www.ncbi.nlm.nih.gov/pubmed/35746746 http://dx.doi.org/10.3390/v14061275 |
_version_ | 1784734184650047488 |
---|---|
author | Santarpia, Joshua L. Markin, Nicholas W. Herrera, Vicki L. Ackerman, Daniel N. Rivera, Danielle N. Lucero, Gabriel A. Lisco, Steven J. |
author_facet | Santarpia, Joshua L. Markin, Nicholas W. Herrera, Vicki L. Ackerman, Daniel N. Rivera, Danielle N. Lucero, Gabriel A. Lisco, Steven J. |
author_sort | Santarpia, Joshua L. |
collection | PubMed |
description | Negative pressure isolation of COVID-19 patients is critical to limiting the nosocomial transmission of SARS-CoV-2; however, airborne isolation rooms are limited. Alternatives to traditional isolation procedures are needed. The evaluation of an Infectious Aerosol Capture Mask (IACM) that is designed to augment the respiratory isolation of COVID-19 patients is described. Efficacy in capturing exhaled breath aerosols was evaluated using laboratory experimentation, computational fluid dynamics (CFD) and measurements of exhaled breath from COVID-19 patients and their surroundings. Laboratory aerosol experiments indicated that the mask captured at least 99% of particles. Simulations of breathing and speaking showed that all particles between 0.1 and 20 µm were captured either on the surface of the mask or in the filter. During coughing, no more than 13% of the smallest particles escaped the mask, while the remaining particles collected on the surfaces or filter. The total exhaled virus concentrations of COVID-positive patients showed a range from undetectable to 1.1 × 10(6) RNA copies/h of SARS-CoV-2, and no SARS-CoV-2 aerosol was detected in the samples collected that were adjacent to the patient when the mask was being worn. These data indicate that the IACM is useful for containing the exhaled aerosol of infected individuals and can be used to quantify the viral aerosol production rates during respiratory activities. |
format | Online Article Text |
id | pubmed-9227466 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92274662022-06-25 Infectious Aerosol Capture Mask as Environmental Control to Reduce Spread of Respiratory Viral Particles Santarpia, Joshua L. Markin, Nicholas W. Herrera, Vicki L. Ackerman, Daniel N. Rivera, Danielle N. Lucero, Gabriel A. Lisco, Steven J. Viruses Article Negative pressure isolation of COVID-19 patients is critical to limiting the nosocomial transmission of SARS-CoV-2; however, airborne isolation rooms are limited. Alternatives to traditional isolation procedures are needed. The evaluation of an Infectious Aerosol Capture Mask (IACM) that is designed to augment the respiratory isolation of COVID-19 patients is described. Efficacy in capturing exhaled breath aerosols was evaluated using laboratory experimentation, computational fluid dynamics (CFD) and measurements of exhaled breath from COVID-19 patients and their surroundings. Laboratory aerosol experiments indicated that the mask captured at least 99% of particles. Simulations of breathing and speaking showed that all particles between 0.1 and 20 µm were captured either on the surface of the mask or in the filter. During coughing, no more than 13% of the smallest particles escaped the mask, while the remaining particles collected on the surfaces or filter. The total exhaled virus concentrations of COVID-positive patients showed a range from undetectable to 1.1 × 10(6) RNA copies/h of SARS-CoV-2, and no SARS-CoV-2 aerosol was detected in the samples collected that were adjacent to the patient when the mask was being worn. These data indicate that the IACM is useful for containing the exhaled aerosol of infected individuals and can be used to quantify the viral aerosol production rates during respiratory activities. MDPI 2022-06-11 /pmc/articles/PMC9227466/ /pubmed/35746746 http://dx.doi.org/10.3390/v14061275 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Santarpia, Joshua L. Markin, Nicholas W. Herrera, Vicki L. Ackerman, Daniel N. Rivera, Danielle N. Lucero, Gabriel A. Lisco, Steven J. Infectious Aerosol Capture Mask as Environmental Control to Reduce Spread of Respiratory Viral Particles |
title | Infectious Aerosol Capture Mask as Environmental Control to Reduce Spread of Respiratory Viral Particles |
title_full | Infectious Aerosol Capture Mask as Environmental Control to Reduce Spread of Respiratory Viral Particles |
title_fullStr | Infectious Aerosol Capture Mask as Environmental Control to Reduce Spread of Respiratory Viral Particles |
title_full_unstemmed | Infectious Aerosol Capture Mask as Environmental Control to Reduce Spread of Respiratory Viral Particles |
title_short | Infectious Aerosol Capture Mask as Environmental Control to Reduce Spread of Respiratory Viral Particles |
title_sort | infectious aerosol capture mask as environmental control to reduce spread of respiratory viral particles |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227466/ https://www.ncbi.nlm.nih.gov/pubmed/35746746 http://dx.doi.org/10.3390/v14061275 |
work_keys_str_mv | AT santarpiajoshual infectiousaerosolcapturemaskasenvironmentalcontroltoreducespreadofrespiratoryviralparticles AT markinnicholasw infectiousaerosolcapturemaskasenvironmentalcontroltoreducespreadofrespiratoryviralparticles AT herreravickil infectiousaerosolcapturemaskasenvironmentalcontroltoreducespreadofrespiratoryviralparticles AT ackermandanieln infectiousaerosolcapturemaskasenvironmentalcontroltoreducespreadofrespiratoryviralparticles AT riveradaniellen infectiousaerosolcapturemaskasenvironmentalcontroltoreducespreadofrespiratoryviralparticles AT lucerogabriela infectiousaerosolcapturemaskasenvironmentalcontroltoreducespreadofrespiratoryviralparticles AT liscostevenj infectiousaerosolcapturemaskasenvironmentalcontroltoreducespreadofrespiratoryviralparticles |