Cargando…
Applicability Assessment of Different Materials for Standards Ensuring Comparability of Optical and Tactile Coordinate Measurements
Multisensor CMMs are systems with an established position on the market, but their popularity still grows, as they provide access to the advantages offered by tactile and contactless measurement methods. Yet there are still questions of the comparability of results obtained using the optical and tac...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227500/ https://www.ncbi.nlm.nih.gov/pubmed/35744187 http://dx.doi.org/10.3390/ma15124128 |
Sumario: | Multisensor CMMs are systems with an established position on the market, but their popularity still grows, as they provide access to the advantages offered by tactile and contactless measurement methods. Yet there are still questions of the comparability of results obtained using the optical and tactile operation modes of multisensor system. This phenomenon can be assessed by measuring appropriate gauges, most often reference rings or spheres. Due to the completely different nature of probing processes for tactile and contactless measurements, the material from which reference object is made may significantly affect measurement results. In order to assess the influence of this factor on measurement accuracy, three reference spheres made from different materials were measured on optical multisensor CMMs. Measurements involved tactile measurements as well as optical measurements made using different probing systems: a video probe and white light sensor. Results obtained from performed experiments show large differences depending on the material used for spherical standard production. On the basis of obtained results, it can be stated that the best material for a reference object that can be used for comparability tests of tactile and optical measurements is a composite of alumina with at least one oxidic additive. |
---|