Cargando…
FDG-PET to T1 Weighted MRI Translation with 3D Elicit Generative Adversarial Network (E-GAN)
Objective: With the strengths of deep learning, computer-aided diagnosis (CAD) is a hot topic for researchers in medical image analysis. One of the main requirements for training a deep learning model is providing enough data for the network. However, in medical images, due to the difficulties of da...
Autores principales: | Bazangani, Farideh, Richard, Frédéric J. P., Ghattas, Badih, Guedj, Eric |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227640/ https://www.ncbi.nlm.nih.gov/pubmed/35746422 http://dx.doi.org/10.3390/s22124640 |
Ejemplares similares
-
SOUP-GAN: Super-Resolution MRI Using Generative Adversarial Networks
por: Zhang, Kuan, et al.
Publicado: (2022) -
FA-GAN: Fused attentive generative adversarial networks for MRI image super-resolution
por: Jiang, Mingfeng, et al.
Publicado: (2021) -
Application of Generative Adversarial Networks (GANs) to jet images
por: Paganini, Michela
Publicado: (2017) -
Seminar: Open challenges for improving Generative Adversarial Networks (GANs)
por: Goodfellow, Ian
Publicado: (2017) -
MB-GAN: Microbiome Simulation via Generative Adversarial Network
por: Rong, Ruichen, et al.
Publicado: (2021)