Cargando…
TinyML: Enabling of Inference Deep Learning Models on Ultra-Low-Power IoT Edge Devices for AI Applications
Recently, the Internet of Things (IoT) has gained a lot of attention, since IoT devices are placed in various fields. Many of these devices are based on machine learning (ML) models, which render them intelligent and able to make decisions. IoT devices typically have limited resources, which restric...
Autores principales: | Alajlan, Norah N., Ibrahim, Dina M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227753/ https://www.ncbi.nlm.nih.gov/pubmed/35744466 http://dx.doi.org/10.3390/mi13060851 |
Ejemplares similares
-
DDD TinyML: A TinyML-Based Driver Drowsiness Detection Model Using Deep Learning
por: Alajlan, Norah N., et al.
Publicado: (2023) -
TinyML
por: Warden, Pete
Publicado: (2019) -
An Evolving TinyML Compression Algorithm for IoT Environments Based on Data Eccentricity
por: Signoretti, Gabriel, et al.
Publicado: (2021) -
Robustifying the Deployment of tinyML Models for Autonomous Mini-Vehicles
por: de Prado, Miguel, et al.
Publicado: (2021) -
Smart Buildings: Water Leakage Detection Using TinyML
por: Atanane, Othmane, et al.
Publicado: (2023)