Cargando…
Novel COVID-19 Diagnosis Delivery App Using Computed Tomography Images Analyzed with Saliency-Preprocessing and Deep Learning
This app project was aimed to remotely deliver diagnoses and disease-progression information to COVID-19 patients to help minimize risk during this and future pandemics. Data collected from chest computed tomography (CT) scans of COVID-19-infected patients were shared through the app. In this articl...
Autores principales: | Tello-Mijares, Santiago, Woo, Fomuy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227777/ https://www.ncbi.nlm.nih.gov/pubmed/35736882 http://dx.doi.org/10.3390/tomography8030134 |
Ejemplares similares
-
Breast Cancer Identification via Thermography Image Segmentation with a Gradient Vector Flow and a Convolutional Neural Network
por: Tello-Mijares, Santiago, et al.
Publicado: (2019) -
Computed Tomography Image Processing Analysis in COVID-19 Patient Follow-Up Assessment
por: Tello-Mijares, Santiago, et al.
Publicado: (2021) -
Preprocessing Effects on Performance of Skin Lesion Saliency Segmentation
por: Joseph, Seena, et al.
Publicado: (2022) -
Facilitating deep learning through preprocessing of optical coherence tomography images
por: Li, Anfei, et al.
Publicado: (2023) -
Deep learning for tipping points: Preprocessing matters
por: Dablander, Fabian, et al.
Publicado: (2022)