Cargando…
Changes in Thyroid Metabolites after Liothyronine Administration: A Secondary Analysis of Two Clinical Trials That Incorporated Pharmacokinetic Data
We examined relationships between thyroid hormone (TH) metabolites in humans by measuring 3,5-diiodothyronine (3,5-T2) and 3-iodothyronamine (3-T1AM) levels after liothyronine administration. In secondary analyses, we measured 3,5-T2 and 3-T1AM concentrations in stored samples from two clinical tria...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227779/ https://www.ncbi.nlm.nih.gov/pubmed/35736409 http://dx.doi.org/10.3390/metabo12060476 |
Sumario: | We examined relationships between thyroid hormone (TH) metabolites in humans by measuring 3,5-diiodothyronine (3,5-T2) and 3-iodothyronamine (3-T1AM) levels after liothyronine administration. In secondary analyses, we measured 3,5-T2 and 3-T1AM concentrations in stored samples from two clinical trials. In 12 healthy volunteers, THs and metabolites were documented for 96 h after a single dose of 50 mcg liothyronine. In 18 patients treated for hypothyroidism, levothyroxine therapy was replaced by daily dosing of 30–45 mcg liothyronine. Analytes were measured prior to the administration of liothyronine weekly for 6 weeks, and then hourly for 8 h after the last liothyronine dose of the study. In the weekly samples from the hypothyroid patients, 3,5-T2 was higher by 0.033 nmol/L with each mcg/dL increase in T4 and 0.24 nmol/L higher with each ng/dL increase in FT4 (p-values = 0.007, 0.0365). In hourly samples after the last study dose of liothyronine, patients with T3 values higher by one ng/dL had 3-T1AM values that were lower by 0.004 nmol/L (p-value = 0.0473); patients with 3,5-T2 higher by one nmol/L had 3-T1AM values higher by 2.45 nmol/L (p-value = 0.0044). The positive correlations between weekly trough levels of 3,5-T2 and T4/FT4 during liothyronine therapy may provide insight into 3,5-T2 production, possibly supporting some production of 3,5-T2 from endogenous T4, but not from exogenous liothyronine. In hourly sampling after liothyronine administration, the negative correlation between T3 levels and 3-T1AM, but positive correlation between 3,5-T2 levels and 3-T1AM could support the hypothesis that 3-T1AM production occurs via 3,5-T2 with negative regulation by T3. |
---|