Cargando…
Quantitative Comparison of Statistical Methods for Analyzing Human Metabolomics Data
Emerging technologies now allow for mass spectrometry-based profiling of thousands of small molecule metabolites (‘metabolomics’) in an increasing number of biosamples. While offering great promise for insight into the pathogenesis of human disease, standard approaches have not yet been established...
Autores principales: | Henglin, Mir, Claggett, Brian L., Antonelli, Joseph, Alotaibi, Mona, Magalang, Gino Alberto, Watrous, Jeramie D., Lagerborg, Kim A., Ovsak, Gavin, Musso, Gabriel, Demler, Olga V., Vasan, Ramachandran S., Larson, Martin G., Jain, Mohit, Cheng, Susan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227835/ https://www.ncbi.nlm.nih.gov/pubmed/35736452 http://dx.doi.org/10.3390/metabo12060519 |
Ejemplares similares
-
Statistical Workflow for Feature Selection in Human Metabolomics Data
por: Antonelli, Joseph, et al.
Publicado: (2019) -
A Single Visualization Technique for Displaying Multiple Metabolite–Phenotype Associations
por: Henglin, Mir, et al.
Publicado: (2019) -
Mapping metabolic oscillations during cell cycle progression
por: Roci, Irena, et al.
Publicado: (2020) -
Mapping choline metabolites in normal and transformed cells
por: Roci, Irena, et al.
Publicado: (2020) -
Deriving Convergent and Divergent Metabolomic Correlates of Pulmonary Arterial Hypertension
por: Alotaibi, Mona, et al.
Publicado: (2023)