Cargando…

Cytotoxicity of 9,10-Phenanthrenequinone Impairs Mitotic Progression and Spindle Assembly Independent of ROS Production in HeLa Cells

The polycyclic aromatic hydrocarbon quinone derivative 9,10-phenanthrenequinone (9,10-PQ) is one of the most abundant and toxic components found in diesel exhaust particles (DEPs). These DEPs are created during diesel fuel combustion and are considered the main source of urban air pollution. As 9,10...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Seul, Leem, Jiyeon, Oh, Jeong Su, Kim, Jae-Sung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227850/
https://www.ncbi.nlm.nih.gov/pubmed/35736935
http://dx.doi.org/10.3390/toxics10060327
Descripción
Sumario:The polycyclic aromatic hydrocarbon quinone derivative 9,10-phenanthrenequinone (9,10-PQ) is one of the most abundant and toxic components found in diesel exhaust particles (DEPs). These DEPs are created during diesel fuel combustion and are considered the main source of urban air pollution. As 9,10-PQ can produce excessive reactive oxygen species (ROS) through redox cycling, it has been shown to exert potent cytotoxic effects against various cell types. However, the mechanisms underlying this cytotoxicity remain unclear. In this study, we showed that 9,10-PQ exerts cytotoxicity by impairing mitotic progression and spindle assembly in HeLa cells. Exposure to 9,10-PQ impaired spindle assembly and chromosome alignment, resulting in delayed mitotic entry and progression in HeLa cells. Furthermore, 9,10-PQ exposure decreased the CEP192 and p-Aurora A levels at the spindle poles. Notably, these mitotic defects induced by 9,10-PQ were not rescued by scavenging ROS, implying the ROS-independent activity of 9,10-PQ. Therefore, our results provide the first evidence that 9,10-PQ exerts its cytotoxicity through specific inhibition of mitotic progression and spindle assembly, independent of ROS.