Cargando…
The Survival Response of Earthworm (Eisenia fetida L.) to Individual and Binary Mixtures of Herbicides
Frequent use of herbicides may impose a risk on non-target species. The objective was to test the combined toxic effect of binary herbicide mixtures—metribuzin:halosulfuron and metribuzin:flumioxazin—on non-target earthworms in two test systems: filter paper and a soil toxicity test system. The join...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227884/ https://www.ncbi.nlm.nih.gov/pubmed/35736928 http://dx.doi.org/10.3390/toxics10060320 |
Sumario: | Frequent use of herbicides may impose a risk on non-target species. The objective was to test the combined toxic effect of binary herbicide mixtures—metribuzin:halosulfuron and metribuzin:flumioxazin—on non-target earthworms in two test systems: filter paper and a soil toxicity test system. The joint action experiments were independently run twice to substantiate the findings. The most potent individual herbicide was metribuzin, with a 50% lethal concentration (LC(50)) of 17.17 µg ai. cm(−2) at 48 h in the filter paper test. The toxicity of the individual herbicides on the filter paper test was ranked as metribuzin>halosulfuron>flumioxazin. In the soil test, metribuzin and halosulfuron had high toxicity with an LC(50) of 8.48 and 10.08 mg ai. kg(−1), respectively, on day 14. Thus, the individual herbicide ranking did not change between the filter paper and artificial soil tests. The herbicide’s mixed effect in both test systems showed a consistent antagonistic effect relative to a Concentration Addition reference model. It indicates that the mixtures retracted the herbicide’s action in the earthworms. |
---|