Cargando…
Interactions between Tryptophan Metabolism, the Gut Microbiome and the Immune System as Potential Drivers of Non-Alcoholic Fatty Liver Disease (NAFLD) and Metabolic Diseases
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing and therefore is its burden of disease as NALFD is a risk factor for cirrhosis and is associated with other metabolic conditions such as type II diabetes, obesity, dyslipidaemia and atherosclerosis. Linking these cardiometabol...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227929/ https://www.ncbi.nlm.nih.gov/pubmed/35736447 http://dx.doi.org/10.3390/metabo12060514 |
_version_ | 1784734308983898112 |
---|---|
author | Teunis, Charlotte Nieuwdorp, Max Hanssen, Nordin |
author_facet | Teunis, Charlotte Nieuwdorp, Max Hanssen, Nordin |
author_sort | Teunis, Charlotte |
collection | PubMed |
description | The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing and therefore is its burden of disease as NALFD is a risk factor for cirrhosis and is associated with other metabolic conditions such as type II diabetes, obesity, dyslipidaemia and atherosclerosis. Linking these cardiometabolic diseases is a state of low-grade inflammation, with higher cytokines and c-reactive protein levels found in individuals with NAFLD, obesity and type II diabetes. A possible therapeutic target to decrease this state of low-grade inflammation is the metabolism of the essential amino-acid tryptophan. Its three main metabolic pathways (kynurenine pathway, indole pathway and serotonin/melatonin pathway) result in metabolites such as kynurenic acid, xanturenic acid, indole-3-propionic acid and serotonin/melatonin. The kynurenine pathway is regulated by indoleamine 2,3-dioxygenase (IDO), an enzyme that is upregulated by pro-inflammatory molecules such as INF, IL-6 and LPS. Higher activity of IDO is associated with increased inflammation and fibrosis in NAFLD, as well with increased glucose levels, obesity and atherosclerosis. On the other hand, increased concentrations of the indole pathway metabolites, regulated by the gut microbiome, seem to result in more favorable outcomes. This narrative review summarizes the interactions between tryptophan metabolism, the gut microbiome and the immune system as potential drivers of cardiometabolic diseases in NAFLD. |
format | Online Article Text |
id | pubmed-9227929 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92279292022-06-25 Interactions between Tryptophan Metabolism, the Gut Microbiome and the Immune System as Potential Drivers of Non-Alcoholic Fatty Liver Disease (NAFLD) and Metabolic Diseases Teunis, Charlotte Nieuwdorp, Max Hanssen, Nordin Metabolites Review The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing and therefore is its burden of disease as NALFD is a risk factor for cirrhosis and is associated with other metabolic conditions such as type II diabetes, obesity, dyslipidaemia and atherosclerosis. Linking these cardiometabolic diseases is a state of low-grade inflammation, with higher cytokines and c-reactive protein levels found in individuals with NAFLD, obesity and type II diabetes. A possible therapeutic target to decrease this state of low-grade inflammation is the metabolism of the essential amino-acid tryptophan. Its three main metabolic pathways (kynurenine pathway, indole pathway and serotonin/melatonin pathway) result in metabolites such as kynurenic acid, xanturenic acid, indole-3-propionic acid and serotonin/melatonin. The kynurenine pathway is regulated by indoleamine 2,3-dioxygenase (IDO), an enzyme that is upregulated by pro-inflammatory molecules such as INF, IL-6 and LPS. Higher activity of IDO is associated with increased inflammation and fibrosis in NAFLD, as well with increased glucose levels, obesity and atherosclerosis. On the other hand, increased concentrations of the indole pathway metabolites, regulated by the gut microbiome, seem to result in more favorable outcomes. This narrative review summarizes the interactions between tryptophan metabolism, the gut microbiome and the immune system as potential drivers of cardiometabolic diseases in NAFLD. MDPI 2022-06-02 /pmc/articles/PMC9227929/ /pubmed/35736447 http://dx.doi.org/10.3390/metabo12060514 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Teunis, Charlotte Nieuwdorp, Max Hanssen, Nordin Interactions between Tryptophan Metabolism, the Gut Microbiome and the Immune System as Potential Drivers of Non-Alcoholic Fatty Liver Disease (NAFLD) and Metabolic Diseases |
title | Interactions between Tryptophan Metabolism, the Gut Microbiome and the Immune System as Potential Drivers of Non-Alcoholic Fatty Liver Disease (NAFLD) and Metabolic Diseases |
title_full | Interactions between Tryptophan Metabolism, the Gut Microbiome and the Immune System as Potential Drivers of Non-Alcoholic Fatty Liver Disease (NAFLD) and Metabolic Diseases |
title_fullStr | Interactions between Tryptophan Metabolism, the Gut Microbiome and the Immune System as Potential Drivers of Non-Alcoholic Fatty Liver Disease (NAFLD) and Metabolic Diseases |
title_full_unstemmed | Interactions between Tryptophan Metabolism, the Gut Microbiome and the Immune System as Potential Drivers of Non-Alcoholic Fatty Liver Disease (NAFLD) and Metabolic Diseases |
title_short | Interactions between Tryptophan Metabolism, the Gut Microbiome and the Immune System as Potential Drivers of Non-Alcoholic Fatty Liver Disease (NAFLD) and Metabolic Diseases |
title_sort | interactions between tryptophan metabolism, the gut microbiome and the immune system as potential drivers of non-alcoholic fatty liver disease (nafld) and metabolic diseases |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227929/ https://www.ncbi.nlm.nih.gov/pubmed/35736447 http://dx.doi.org/10.3390/metabo12060514 |
work_keys_str_mv | AT teunischarlotte interactionsbetweentryptophanmetabolismthegutmicrobiomeandtheimmunesystemaspotentialdriversofnonalcoholicfattyliverdiseasenafldandmetabolicdiseases AT nieuwdorpmax interactionsbetweentryptophanmetabolismthegutmicrobiomeandtheimmunesystemaspotentialdriversofnonalcoholicfattyliverdiseasenafldandmetabolicdiseases AT hanssennordin interactionsbetweentryptophanmetabolismthegutmicrobiomeandtheimmunesystemaspotentialdriversofnonalcoholicfattyliverdiseasenafldandmetabolicdiseases |