Cargando…
Source Sector Mitigation of Solar Energy Generation Losses Attributable to Particulate Matter Pollution
[Image: see text] Particulate matter (PM) in the atmosphere and deposited on solar photovoltaic (PV) panels reduce PV energy generation. Reducing anthropogenic PM sources will therefore increase carbon-free energy generation and as a cobenefit will improve surface air quality. However, we lack a glo...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228073/ https://www.ncbi.nlm.nih.gov/pubmed/35649256 http://dx.doi.org/10.1021/acs.est.2c01175 |
Sumario: | [Image: see text] Particulate matter (PM) in the atmosphere and deposited on solar photovoltaic (PV) panels reduce PV energy generation. Reducing anthropogenic PM sources will therefore increase carbon-free energy generation and as a cobenefit will improve surface air quality. However, we lack a global understanding of the sectors that would be the most effective at achieving the necessary reductions in PM sources. Here we combine well-evaluated models of solar PV performance and atmospheric composition to show that deep cuts in air pollutant emissions from the residential, on-road, and energy sectors are the most effective approaches to mitigate PM-induced PV energy losses over East and South Asia, and the Tibetan Plateau, Central Asia, and the Arabian Peninsula, and Western Siberia, respectively. Using 2019 PV capacities as a baseline, we find that a 50% reduction in residential emissions would lead to an additional 10.3 TWh yr(–1) (US$878 million yr(–1)) and 2.5 TWh yr(–1) (US$196 million yr(–1)) produced in China and India, respectively. |
---|