Cargando…
Motor Imagery EEG Classification Based on Transfer Learning and Multi-Scale Convolution Network
For the successful application of brain-computer interface (BCI) systems, accurate recognition of electroencephalography (EEG) signals is one of the core issues. To solve the differences in individual EEG signals and the problem of less EEG data in classification and recognition, an attention mechan...
Autores principales: | Chang, Zhanyuan, Zhang, Congcong, Li, Chuanjiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228168/ https://www.ncbi.nlm.nih.gov/pubmed/35744539 http://dx.doi.org/10.3390/mi13060927 |
Ejemplares similares
-
Spatial-Frequency Feature Learning and Classification of Motor Imagery EEG Based on Deep Convolution Neural Network
por: Miao, Minmin, et al.
Publicado: (2020) -
Classification of Motor Imagery EEG Signals Based on Data Augmentation and Convolutional Neural Networks
por: Xie, Yu, et al.
Publicado: (2023) -
Local and global convolutional transformer-based motor imagery EEG classification
por: Zhang, Jiayang, et al.
Publicado: (2023) -
Task Transfer Learning for EEG Classification in Motor Imagery-Based BCI System
por: Zheng, Xuanci, et al.
Publicado: (2020) -
A Parallel Multiscale Filter Bank Convolutional Neural Networks for Motor Imagery EEG Classification
por: Wu, Hao, et al.
Publicado: (2019)