Cargando…
Compressive Strength of Steel Fiber-Reinforced Concrete Employing Supervised Machine Learning Techniques
Recently, research has centered on developing new approaches, such as supervised machine learning techniques, that can compute the mechanical characteristics of materials without investing much effort, time, or money in experimentation. To predict the 28-day compressive strength of steel fiber–reinf...
Autores principales: | Li, Yongjian, Zhang, Qizhi, Kamiński, Paweł, Deifalla, Ahmed Farouk, Sufian, Muhammad, Dyczko, Artur, Kahla, Nabil Ben, Atig, Miniar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228203/ https://www.ncbi.nlm.nih.gov/pubmed/35744270 http://dx.doi.org/10.3390/ma15124209 |
Ejemplares similares
-
Flexural Strength Prediction of Steel Fiber-Reinforced Concrete Using Artificial Intelligence
por: Zheng, Dong, et al.
Publicado: (2022) -
Compressive Strength Evaluation of Ultra-High-Strength Concrete by Machine Learning
por: Shen, Zhongjie, et al.
Publicado: (2022) -
Glass Fibers Reinforced Concrete: Overview on Mechanical, Durability and Microstructure Analysis
por: Ahmad, Jawad, et al.
Publicado: (2022) -
Behavior of Rectangular-Sectional Steel Tubular Columns Filled with High-Strength Steel Fiber Reinforced Concrete Under Axial Compression
por: Liu, Shiming, et al.
Publicado: (2019) -
Multivariable Regression Strength Model for Steel Fiber-Reinforced Concrete Beams under Torsion
por: Deifalla, Ahmed F., et al.
Publicado: (2021)