Cargando…

Lightweight Self-Detection and Self-Calibration Strategy for MEMS Gas Sensor Arrays

With the development of Internet of Things (IoT) and edge computing technology, gas sensor arrays based on Micro-Electro-Mechanical System (MEMS) fabrication technique have broad application prospects in intelligent integrated systems, portable devices, and other fields. In such complex scenarios, t...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Bing, Zhou, Yanzhen, Fu, Hongshuo, Fu, Ping, Feng, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228328/
https://www.ncbi.nlm.nih.gov/pubmed/35746097
http://dx.doi.org/10.3390/s22124315
Descripción
Sumario:With the development of Internet of Things (IoT) and edge computing technology, gas sensor arrays based on Micro-Electro-Mechanical System (MEMS) fabrication technique have broad application prospects in intelligent integrated systems, portable devices, and other fields. In such complex scenarios, the normal operation of a gas sensing system depends heavily on the accuracy of the sensor output. Therefore, a lightweight Self-Detection and Self-Calibration strategy for MEMS gas sensor arrays is proposed in this paper to monitor the working status of sensor arrays and correct the abnormal data in real time. Evaluations on real-world datasets indicate that the strategy has high performance of fault detection, isolation, and data recovery. Furthermore, our method has low computation complexity and low storage resource occupation. The board-level verification on CC1350 shows that the average calculation time and running power consumption of the algorithm are 0.28 ms and 9.884 mW. The proposed strategy can be deployed on most resource-limited IoT devices to improve the reliability of gas sensing systems.