Cargando…

A Robust Expression and Purification Method for Production of SpCas9-GFP-MBP Fusion Protein for In Vitro Applications

Genome editing using the CRISPR/Cas9 system is one of the trendiest methodologies in the scientific community. Many genome editing approaches require recombinant Streptococcus pyogenes Cas9 (SpCas9) at some point during their application, for instance, for in vitro validation of single guide RNAs (S...

Descripción completa

Detalles Bibliográficos
Autores principales: Fleitas, Andrea Luciana, Señorale, Mario, Vidal, Sabina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228339/
https://www.ncbi.nlm.nih.gov/pubmed/35736545
http://dx.doi.org/10.3390/mps5030044
Descripción
Sumario:Genome editing using the CRISPR/Cas9 system is one of the trendiest methodologies in the scientific community. Many genome editing approaches require recombinant Streptococcus pyogenes Cas9 (SpCas9) at some point during their application, for instance, for in vitro validation of single guide RNAs (SgRNAs) or for the DNA-free editing of genes of interest. Hereby, we provide a simple and detailed expression and purification protocol for SpCas9 as a protein fused to GFP and MBP. This protocol improves protein yield and simplifies the purification process by overcoming the frequently occurring obstacles such as plasmid loss, inconsistent protein expression levels, or inadequate protein binding to affinity resins. On average, this protocol yields 10 to 30 mg of purified, active, His6−MBP−SpCas9 NLS−GFP protein. The purity addressed through SDS-PAGE is > 80%.