Cargando…
Mechanically Diverse Gels with Equal Solvent Content
[Image: see text] Mechanically diverse polymer gels are commonly integrated into biomedical devices, soft robots, and tissue engineering scaffolds to perform distinct yet coordinated functions in wet environments. Such multigel systems are prone to volume fluctuations and shape distortions due to di...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228556/ https://www.ncbi.nlm.nih.gov/pubmed/35756385 http://dx.doi.org/10.1021/acscentsci.2c00472 |
Sumario: | [Image: see text] Mechanically diverse polymer gels are commonly integrated into biomedical devices, soft robots, and tissue engineering scaffolds to perform distinct yet coordinated functions in wet environments. Such multigel systems are prone to volume fluctuations and shape distortions due to differential swelling driven by osmotic solvent redistribution. Living systems evade these issues by varying proximal tissue stiffness at nearly equal water concentration. However, this feature is challenging to replicate with synthetic gels: any alteration of cross-link density affects both the gel’s swellability and mechanical properties. In contrast to the conventional coupling of physical properties, we report a strategy to tune the gel modulus independent of swelling ratio by regulating network strand flexibility with brushlike polymers. Chemically identical gels were constructed with a broad elastic modulus range at a constant solvent fraction by utilizing multidimensional network architectures. The general design-by-architecture framework is universally applicable to both organogels and hydrogels and can be further adapted to different practical applications. |
---|