Cargando…
Enhancing PM(2.5) Prediction Using NARX-Based Combined CNN and LSTM Hybrid Model
In a world where humanity’s interests come first, the environment is flooded with pollutants produced by humans’ urgent need for expansion. Air pollution and climate change are side effects of humans’ inconsiderate intervention. Particulate matter of 2.5 µm diameter (PM(2.5)) infiltrates lungs and h...
Autores principales: | Moursi, Ahmed Samy AbdElAziz, El-Fishawy, Nawal, Djahel, Soufiene, Shouman, Marwa A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228573/ https://www.ncbi.nlm.nih.gov/pubmed/35746200 http://dx.doi.org/10.3390/s22124418 |
Ejemplares similares
-
An IoT enabled system for enhanced air quality monitoring and prediction on the edge
por: Moursi, Ahmed Samy, et al.
Publicado: (2021) -
A Deep CNN-LSTM Model for Particulate Matter (PM(2.5)) Forecasting in Smart Cities
por: Huang, Chiou-Jye, et al.
Publicado: (2018) -
Detection of Corona Faults in Switchgear by Using 1D-CNN, LSTM, and 1D-CNN-LSTM Methods
por: Mohammed Alsumaidaee, Yaseen Ahmed, et al.
Publicado: (2023) -
Language Processing Model Construction and Simulation Based on Hybrid CNN and LSTM
por: Zhang, Shujing
Publicado: (2021) -
A hybrid CNN-LSTM model for pre-miRNA classification
por: Tasdelen, Abdulkadir, et al.
Publicado: (2021)