Cargando…
Online Domain Adaptation for Rolling Bearings Fault Diagnosis with Imbalanced Cross-Domain Data
Traditional machine learning methods rely on the training data and target data having the same feature space and data distribution. The performance may be unacceptable if there is a difference in data distribution between the training and target data, which is called cross-domain learning problem. I...
Autores principales: | Chao, Ko-Chieh, Chou, Chuan-Bi, Lee, Ching-Hung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228669/ https://www.ncbi.nlm.nih.gov/pubmed/35746322 http://dx.doi.org/10.3390/s22124540 |
Ejemplares similares
-
Triplet Loss Guided Adversarial Domain Adaptation for Bearing Fault Diagnosis
por: Wang, Xiaodong, et al.
Publicado: (2020) -
Unsupervised Domain Adaptive 1D-CNN for Fault Diagnosis of Bearing
por: Shao, Xiaorui, et al.
Publicado: (2022) -
A Novel Domain Adaptation-Based Intelligent Fault Diagnosis Model to Handle Sample Class Imbalanced Problem
por: Zhang, Zhongwei, et al.
Publicado: (2021) -
Fault Diagnosis of Rolling Bearing Based on a Priority Elimination Method
por: Xiang, Chuan, et al.
Publicado: (2023) -
Fault Feature Extraction and Diagnosis of Rolling Bearings Based on Enhanced Complementary Empirical Mode Decomposition with Adaptive Noise and Statistical Time-Domain Features
por: Zhan, Liwei, et al.
Publicado: (2019)