Cargando…
Properties of SS304 Modified by Nickel–Cobalt Alloy Coating with Cauliflower-Shaped Micro/Nano Structures in Simulated PEMFC Cathode Environment
This study presents the corrosion behavior and surface properties of SS304 modified by electrodeposited nickel–cobalt (Ni–Co) alloy coating with cauliflower-shaped micro/nano structures (Ni–Co/SS304) in the simulated PEMFC cathodic environment. The hydrophobicity of the as-prepared Ni–Co alloy coati...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228718/ https://www.ncbi.nlm.nih.gov/pubmed/35745315 http://dx.doi.org/10.3390/nano12121976 |
Sumario: | This study presents the corrosion behavior and surface properties of SS304 modified by electrodeposited nickel–cobalt (Ni–Co) alloy coating with cauliflower-shaped micro/nano structures (Ni–Co/SS304) in the simulated PEMFC cathodic environment. The hydrophobicity of the as-prepared Ni–Co alloy coating can be improved simply by low-temperature annealing. The morphology and composition of the Ni–Co/SS304 were analyzed and characterized by SEM, EDS, XRD, and XPS. The polarization, wettability, and ICR tests were respectively conducted to systemically evaluate the performance of Ni–Co/SS304 in the simulated PEMFC cathode environment. As revealed by the results, the Ni–Co/SS304 can maintain its hydrophobicity under hot-water droplets as high as 80 °C and demonstrates higher conductivity than the bare SS304 substrate before and after polarization (0.6 V vs. SCE, 5 h), which is of great significance to improve the surface hydrophobicity and conductivity of bipolar plates. |
---|