Cargando…
Deep Learning Approach to Impact Classification in Sensorized Panels Using Self-Attention
This paper proposes a new method of impact classification for a Structural Health Monitoring system through the use of Self-Attention, the central building block of the Transformer neural network. As a topical and highly promising neural network architecture, the Transformer has the potential to gre...
Autores principales: | Karmakov, Stefan, Aliabadi, M. H. Ferri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228771/ https://www.ncbi.nlm.nih.gov/pubmed/35746152 http://dx.doi.org/10.3390/s22124370 |
Ejemplares similares
-
A Bayesian Approach for Sensor Optimisation in Impact Identification
por: Mallardo, Vincenzo, et al.
Publicado: (2016) -
Attention Aware Deep Learning Approaches for an Efficient Stress Classification Model
por: Zulqarnain, Muhammad, et al.
Publicado: (2023) -
Automatic Classification of Squat Posture Using Inertial Sensors: Deep Learning Approach
por: Lee, Jaehyun, et al.
Publicado: (2020) -
Interpretable deep learning approach for oral cancer classification using guided attention inference network
por: Figueroa, Kevin Chew, et al.
Publicado: (2022) -
A hybrid self-attention deep learning framework for multivariate sleep stage classification
por: Yuan, Ye, et al.
Publicado: (2019)